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PREFACE
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

UeSe customary units of measurement used in this report can be converted to
metric (SI) units as follows:

Multiply by To obtain
inches 2544 millimeters
2+54 centimeters
square inches 6432 square centimeters
cubic inches 16.39 cubic centimeters
feet 30.48 centimeters
0.3048 meters
square feet 0.0829 square meters
cubic feet 0.0283 cubic meters
yards 0.9144 meters
square yards 0.836 square meters
cubic yards 0.7646 cubic meters
miles 1.6093 kilometers
square miles 259.0 hectares
knots 1.852 kilometers per hour
acres 0.4047 hectares
foot-pounds 1.3558 newton meters
millibars 1.0197 x 1073 kilograms per square centimerer
ounces 28.35 grams
pounds 453.6 grams
0.4536 kilograms
ton, long 1.G160 metric tons
ton, short 0.9072 metric tous
degrees (angle) 0.01745 radians
Fahrenheit degrees 5/9 Celsius degrees or Kelvins!

'To obtain Celsius (C) temperature readings from Fahrenheit (F) readings,
use formula: C = (5/9) (F -32).
To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.



ANALYSIS OF COASTAL SEDIMENT TRANSPORT PROCESSES FROM
WRIGHTSVILLE BEACH TO FORT FISHER, NORTH CAROLINA

by
T.C. Winton, I.B., Chou, G.!. Powell, and J.D. Crane

I. INTRODUCTION

This report presents a comprehensive engineering analysis of the
coastal sediment transport processes along a 42-kilometer segment of the
North Carolina shoreline from Wrightsville Beach to Fort Fisher.
Included in the analysis is an interpretation of all available data
describing the littoral processes, longshore transport, and the behavior
and success of beach nourishment projects at Wrightsville Beach and at
Carolina Beach, North Carolina.

Several coastal engineering studies have been conducted within the
study area to assess the nearshore coastal processes and shoreline
erosion trends. Vallianos (1970) investigated the influence of the
manmade Carolina Beach Inlet on the volumetric erosion trends of the
Masonboro and Carolina beach shorelines. He presented a preliminary
assessment of the impact of Masonboro Inlet north jetty on the longshore
transport trends for Wrightsville and Masonboro beach shorelines, and an
evaluation on the performance of the 1965 Carolina Beach beach fill,

Jarrett (1977) conducted a study for the 30-kilometer segment of
shoreline from Wrightsville Beach to Kure Beach in relation to an
environmental assessment of coastal erosion as affected by Carolina
Beach Inlet. He estimated the annual rate of littoral transport between
nine littoral cells by using a calibrated energy flux-wave refraction
sediment budget approach. Jarrett refined Vallianos' (1970) bypassing
rates for both Masonboro and Carolina Beach Inlet and reassessed the
magnitude of the impact on shore process of mammade changes occurring
during the study period. The results of this study are also available
in reports by the U.S. Army Engineer District, Wilmington (1976; 1977).

The U,S. Army Engineer District, Wilmington (1974), presented
historic shoreline changes in the vicinity of Fort Fisher between 1865
and 1973, Several plans were recommended to protect the historic Fort
Fisher battlements from critical dune erosion.

Large quantities of data, some of which are not available to previous
investigators, were evaluated during this study. Much of the field data
were collected from 1964 to 1975 for shoreline erosion studies conducted
by the U.S. Army Engineer District, Wilmington, and in part for the
Coastal FEngineering Research Center's (CERC) Beach Evaluation Program
{BEP). Profile surveying and the collection of other data used in this
report were coordinated by CERC. Data evaluated include repetitive
beach profiles, sand data, bathymetry surveys, wave gage records,
dredging records, meteorological records, coastal structure design,
coastal geomorphological studies, shoreline erosion studies, aerial
photography, and beach photography.



Appendixes A to G present a graphic description of the shoreline
changes along the study area between 1964 and 1975. These plots allow a
quantitative assessment and Interpretation of beach response to seasonal
climatic changes, storm events, beach-fill projects, and coastal
engineering structures. Long-term trends are identified and used to
establish a sediment budget model of Wrightsville and Carclina Beaches.
The analysis of the excursion distance response of the mean low water
(MLW), mean sea level (MSL), and mean high water (MHW) contours of
profiles along Wrightsville and Carolina Beaches permitted the formu-—
lation of a mathematical description of post beach-fill performances.

All analyses and interpretations of results are included in this
report. Supplementary data are provided in eight unpublished volumes
(I to VIII) which are available from the CERC technical library.
Volume I contains five sections: Section A provides a beach profile
documentation for the entire study shoreline; Section B presents storm
histories (accounts of the major storms occurring in the study area);
Section C provides a wave refraction analysis of the area including wave
gage data for selected wave spectra plots, selected data from GERC's
Littoral Environmment Observation (LEQ) program, and wave refraction
plots; Section D presents plots and tabulated values of the gross
northerly and southerly, and the net longshore energy flux distribution;
and Section E provides data on volumetric changes which occurred within
all inlets along the study area. Comparative short and long beach
profiles, beach profile data, MSL excursion rate tables, MSL volumetric
change plots and tables, and selected sand data are presented for
Wrightsville Beach {(Vols. II, III, and IV), Masonboro Beach (Vol. V),
Carolina Beach (Vols. VI and VII), Kure Beach (Vol. VIII, Sec. 1), and
Fort Fisher (Vol. VIII, Sec. J).

I1. STUDY AREA

The study area is part of the tidewater region of the Atlantic
Coastal Plain, consisting of a series of low, narrow, sandy barrier
igslands and peninsular beaches located in New Hanover County, North
Carolina. The islands front the Atlantic Ocean just north of Cape Fear
and are separated from the mainland by either the Cape Fear River
estuary or by Myrtle Grove, Masonboro, Greenville, and Middle Sounds,
The five coastal sites in the 42-kilometer study are (from north to
south) Wrightsville Beach, Masonboro Beach, Carolina Beach, Kure Beach,
and Fort Fisher. Figure l shows the study area and the location of the
five study segments.

The beach sands are generally fine and composed of quartz sand with
a shell content ranging from 0 to 42 percent. The direct sources of
littoral materials for the study area are the adjacent beaches, dunes,
and bluffs (direction of transport depending on direction of wave
attack) as a result of erosion, and the nearshore ocean bottom areas,
from which material is brought onto shore. A complete description of
the geomorphology and geologic history of the study area has been
gummarized by Pierce (1970).
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Based on data recorded by CERC's wave gage located at Wrightsville
Beach, the annual significant wave height is 0.76 meter (2.5 feet).
Wave observations along Wrightsville Beach indicate that 98 percent of
the observed wave energy apprcaches from the eastern and southeastern
quadrants. The dominant direction of littoral transport is from north
to south; however, reversals in transport direction along the beaches do
occur. The mean and spring tidal ranges are 1.2 and 1.4 meters,
respectively; the difference between MSL and MLW is 0.57 meter.

Wrightsville Beach i1s about 6.75 kilometers in length, with an
average dune height of 4 meters above MSL., The beach faces approxi-
mately east-southeast, has an average beach slope from MHW to the
-6.0 meter (MSL) depth contour of 1 on 37.2, and contains beach sedi-
ments with a mean grain size of 0.27 millimeter. The ocean shoreline of
Wrightsville Beach was modified in 1965 by the construction of a hurri-
cane and storm protection project. Initially, 2,288,000 cubic meters of
fill material was placed along 5,100 meters of beach north of Masonboro
Inlet with artificial dune heights constructed to an approximate eleva-
tion of +2.5 mweters (MSL) for storm protection purposes. The northern
transition section included the closure of Moore Inlet, which had
previously separated Wrightsville Beach from Shell Island. In spring
1966, an additional 244,000 cubic meters of fill material from the
Masonboro Inlet was placed between Johnnie Mercer's Pier and Crystal
Pier. In October 1966, a final deposition of 32,100 cubic meters of
material from the estuarial area behind Shell Island was placed along
the northernmost 610 meters within the town limits of the Wrightsville
Beach project shoreline.

In 1970, a renourishment of the central shoreline of Wrightsville
Beach was required. A total of 1,033,600 cubic meters of fill material
obtained from a shoal in the Banks Channel and the sound area behind
Shell Island was placed on the beach, beginning at a point approximately
1.83 kilometers north of Masonboro Inlet and extending to the northern
city limits of Wrightsville Beach. Figure 2 is an aerial photo strip
map showing the Wrightsville Beach shoreline.

Masonboro Island is bordered by Masonboro Inlet to the north, and by
Carolina Beach Inlet {(opened in 1952 by local interest groups) to the
south (Figs. 2 and 3), It is a very narrow, low-lying uninhabited
island approximately 12.5 kilometers long with a shoreline orientation
from north-northeast to south-southwest, The natural dune heights along
the island range from 3 to 10 meters (MSL), and the median grain size is
0.34 millimeter. The average beach slope is approximately 1 on 59.

Carolina Beach is located just.south of the Carolina Beach Inlet and
extends about 4.3 kilometers southward to Kure Beach (Figu. 3 and 4).
The northern end of Carolina Beach has experienced high erosion rates
since the opening of Carolina Beach Inlet (Vallianos, 1970), which have
affected the efficiency of a hurricane and shore protection project
constructed in 1965. The 4.27 kilometers of shoreline fronting the town
of Carolina Beach was nourished with about 2,014,000 cubic meters of
fill material obtained from the Carolina Beach harbor. However, by
1967, erosion of the northern 1.2 kilometers of the project beach was so
severe that emergency action was required. Approximately 314,000 cubic

12



o= . )
-~ & |
‘,\:\'\jf

-,

4 A FIGURE -]
A EIGHT /
| LISLAND )
i 2| - WRIGHTSVILL
fl " _ : . BEACH

CRYSTAL
PIER

b

MASCNBORO INLET

Figure 2. Aerlal photo map of study area from Figure Eight lsland
to Masonboro Beach, North Carolina.



Figure 3. Aerial photo map of study area from Masonboro Beach
to Carolina Beach, North Carolina.
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meters of fill material was distributed there and 83,400 cubic meters of
sand was placed to form a new 520-meter transition section from the
original northern limits of the project beach. A temporary wooden groin
was constructed at the transition junction between the two fill sites.

Despite the 1967 emergency action, serious erosion continued,
reguiring the supplemental emergency construction in 1970 of a 335-meter
rubble-mound seawall extending southward from the northern boundary of
the project. In conjunction with the seawall construction, 264,500
cubic meters of fill material from the sediment trap located inside
Carolina Beach Inlet was placed along the northern 1.2 kilometers of
shoreline. By late spring 1971, the southern 3.47 kilometers of the
project beach had been partially restored with approximately 581,000
cubic meters of material from a borrow area located in the Cape Fear
River. The rubble-mound seawall was extended an additional 290 meters
southward in 1973. The severe erosion trend of the northern project
limits continued despite the numerous remedial measures taken.

Kure Beach has a shoreline about 4.25 kilometers in length, and is
situated between Carolina Beach to the north and Fort Fisher to the
south (Fig. 4). The city of Kure Beach and the unincorporated towns of
Wilmington Beach and Hanby Beach are located in this segment. Dune
heights average 2.5 meters above MSL along this segment; beaches have a
median sand grain size of 0.30 millimeter and an average beach profile
slope of 1 on 30. The beaches along this shoreline remained relatively
stable during the study period.

Fort Fisher, the southernmost segment of shoreline studied, is
approximately 6.25 kilometers long and extends southward from Kure Beach
to just north of New Inlet (Figs. 4 and 5). The mean grain size of the
beach sand is 0.27 millimeter and the average slope is approximately 1
on 36, The northern 1.6 kilometers of shoreline is a sandy beach, mostly
undeveloped, which varies in width from 27 to 55 meters., This section
remained relatively stable during the study period. The central stretch
of beach contains the historic remains of a Confederate Army
fortification known as Fort Fisher, which was built adjacent to New
Inlet. Since the closure of this inlet in 1883, rapid erosion exposed
an outcrop of coguina rock located adjacent to the remains of the fort
(Fig. 1). The sandy beach fronting Fort Fisher varied in width from 0
to 45 meters during mean tide levels, and the sand bluff along the
backshore continued to erode at a critical rate, thus requiring con-
struction of an emerpgency rubble revetment. In July 1965, additional
rubble was placed along both the northern and southern flanks; 11,500
cubic meters of sand was also placed along 213 meters of shore north of
the revetment. 1In May 1967, an extratropical cyclone caused severe
erosion to the 1965 emergency fill which required placement of another
11,500 cubic meters of sand along the same beach section. In 1970,
further emergency measures were implemented by placement of a limestone
revetment along a part of the upland bluff which had previously been
protected by the beach fills, The southermost 4.58 kilometers of shore
is an accreting sandspit characterized by low topography and a sandy
beach with widths between 60 and 275 meters.

?he study area and the beach-fill projects are further described in
Vallianos (1970), U.S. Army Engineer District, Wilmington (1970, 1974,
and 1977), and Jarrett (1977).
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FORAT FISHER

Figure 5. Aerial photo map of study area from Fort Fisher
to Cape Fear, North Carolina.
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ITI. DATA COLLECTION

1. Beach Profiles.

The sediment budget analysis performed in the study area was based
on the beach profile data provided by CERC. Beach surveys were taken
at 241 stations along the shoreline, and each profile was perpendicular
to the local shoreline. The survey stations were numbered sequentially
from north to south and were prefixed by the abbreviation of the
corresponding beach name; e.g., WB for Wrightsville Beach (50 stations),
MB for Masonboro Beach (31 stations), CB for Carolina Beach
(119 stations), KB for Kure Beach (20 stations), and FB for Fort Fisher
Beach (21 stations). Station CB2 would therefore represent the second
station from the north in Carolina Beach. Figures 6 and 7 show the
relative locations of all the stations.

The beach surveys were conducted by contractor for U.8. Army
Engineer District, Wilmington, from 1963 to 1975. Most profiles were
measured by level and tape and extended to only about 2.4 meters
(8 feet) or less below MSL. These profiles were referred to as short
profiles. Long profiles were measured to a depth of 12,2 meters
(40 feet) using a depth sounder. Table 1 shows the survey stations,
along with CERC's station reference codes, which indicates long profiles
by the letter L.

About 2,952 repetitive beach profiles were taken during 399 surveys,
including 2,815 short profiles and 137 long profiles, Table 2 shows the
number of short and long profiles for each beach. Table 2 and Figures 6
and 7 show that Wrightsville and Carolina Beaches have much better
temporal and spatial resolution than the rest of the study area. Of the
entire beach data, 89 percent of the profiles were taken on Wrightsville
and Carolina Beaches. The Fort Fisher Beach, Kure Beach, and Masonboro
Beach profile data were of insufficient quantity to permit a valid.
analysis.

All data are available in supplementary data Volumes I to VIII from
the CERC library.

2. Wave Data.

The wave climate data for the study area are from the following
sources:

(a) A CERC wave gage, located on Johnnie Mercer's Pier at
Wrightsville Beach, which operated from March 1971 to February
1975. The gage was located in 5.2 meters (17 feet) of water,
and the recorded wave data represent approximately all waves
reaching Wrightsville Beach from all gseaward directions.
However, wave direction could not be differentiated by the
gage. The wave gage data for this study with selected wave
spectral plots are presented in supplementary data Volume I.
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Table 1., Cross references for beach profile data--Continued.
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Table 2. Repetitive short and long profiles measured along the study area.

Beach First survey (yr) || Last survey (yr) [[ Ranges (No.) || Profiles (No.) f Surveys
Short | Long Short | Long || Short | Long | Short | Lone (No.)
Wrightsville 1963 1965 1974 1970 50 17 1,562 K\ 310
Masounboro 1964 1969 1973 1971 31 12 93 23 14
Carolina 1965 1967 1973 1971 119 15 956 62 81
Kure 1969 1969 1973 1970 20 4 101 8 17
Fort Fisher 1969 1970 1973 1970 21 5 103 3

(b) Visual observations by U.S. Coast Guard personnel from the
Frying Pan Shoals Light Tower. The wave data with the monthly
wave statistics were provided by CERC,

(¢) Long-term deepwater wave statistics provided in the Summary of
Synoptic Meteorological Observations (SSMO) (U.S. Naval Weather
Service Command, 1975).

(d) CERC's wave observation program at Wrightsville Beach provided
visual observations of wave conditions, recorded daily at
Johnnie Mercer's Pier between June 1970 and December 1973,

CERC provided the monthly statistical analysis of these
shore-based wave observations including breaking wave height,
period, and direction. The wave data collected at Wrightsville
Beach during the study period are available in supplementary
data Volumes 11, III, and IV.

3. Beach Sand Data.

Beach sand data for certain profiles within the study area from 1969
to 1971 were provided by CERC. Samples were collected along the profile
azimuth from the. dune crest, the berm, and at MHW, MSL, MLW, ~-1.8 meters
(-6 feet) (MLW), ~3.66 meters (-12 feet) (MLW), and -5.49 meters
(-18 feet) (MLW), Frequency of sand sample collection was not con-
sistent from beach to beach or from profile to profile, The sand was
analyzed for basic engineering properties including grain-size distribu-
tion, median grain size, standard deviation, fall velocity, and compo-
sition. CGrain-size analyses are summarized in Table 3, The complete
sand data are presented in supplementary data volumes for each beach
segment (except for Kure Beach).
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Table 3.

Beach sand grain-size data.

' MHW MSL MLW

Station = o) 2 - ] 2
WB15 2.28 0.29 2.18 | 0.32 2,02 0.50
WB16 1.67 0.72 1.59 0.90 1.77 0.88
WB19 L 2.09 0.34 2.09 U.35 2.20 0.38
WB25 \ 1.69 | 0.52 1.31 \ 0.70 1.13 | 1.07
WEB29 1.56 0.82 2.19 0.59
WB42 2.10 0.70 2.61 0.50
WBLT 1.09 6.72 1.07 0.85 1.38 0.97
WB50 2.18 0.36 2.19 | G.57 2.05 0.68
MB4 2.24 0.28 2.06 | 0.45 1.91 0.63
MB14 \ l 2.00 0.49
MB20 | 0.83 0.61 1.53 | 0.72 1.56 0.95
MB23 1.16 0.49 1.33 | 0.46 1.22 0.76
MB26 | 0.89 | 0.77 1.33 | 0.56

MB29 ' 1.83 0.44 0.76 0.67
CBl , 1.60 0.62
CR3 ' 1.47 0.62
CBL2 ! 1.52 0.43 L 119 0.63 1.46 0.47
CB61 1.76 0.30 1.20 0.35 0.82 0.40
CB77 | ‘ 0.79 0.37 1.33 0.47
CB97 1.36 0.38 0.95 0.51 0.8% 0.33
CB112 1.51 0.38 | 1.66 0.31 0.80 0.60
FBIL1 2.0 | 0.30 \ 1.95 | 0.53 2.28 | 0.64
FBL8 | 1.73 0.37 | 1.21 0.57 1.61 0.55

L
2

mean value of ¢,
= gtandard deviation of .,

NOTE--¢»= -log,D, where D =

sand diameter in millimeters,
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IV. ANALYSIS OF BEACH PROFLLE DATA

1. Excursion Distance Technique.

If successive aerial photos of a beach face are compared with each
other and a change in location of the beach is noted, then this change
is indicative of either a period of erosion or accretion. Horizontal
displacement of the planform position of any one point on the beach,
from one survey to another, is the excursion distance for that point for
the survey period. On an accreting beach, the excursion distance of a
point relative to its initial position is positive, and on an eroding
beach, it is negative. The rate of change of the excursion distance
with time is the excursion rate,

If successive beach profiles are reduced to a common base line, the
excursion distance of each point on the profile indicates the magnitude
of the onshore-offshore movement. The relative magnitude of the excur-
sion distances between two or more points on the same profile identifies
and quantifies the change in beach slope between those points. Beach
excursions can be converted to volumetric changes for the entire active
profile by applying to the excursion distances a volumetric equivalent
factor. This factor was developed from measured changes at two piers
located along Wrightsville Beach (U.S. Army Engineer District, Wil-
mington, 1977), which showed that for a closure depth of approximately
8.23 meters, each meter of excursion was equivalent to 8.23 cubic meters
of change for the entire active profile per meter of beach front,
Equivalently in English units, for a closure depth of 27 feet, each foot
of excursion was equivalent to 1 cubic yard of change for the entire
active profile per foot of beach front. Consequently, excursion
distance analysis 1s a simple but powerful technique which is used to
identify and quantify both long~term beach changes and the response of a
beach to short-term impacts resulting from storm activity, beach fills,
and other man-induced changes.

2. Historical Events Affecting Excursion Distance Analysis.

Meaningful interpretation of excursion distance plots can only be
per formed 1f known short-term or sudden impact events are identified and
accounted for within the analysis. In order to do this, all major
erosion-causing storms and all man-related activities which cause
erosion—accretion during the study period must be abstracted from the
‘historical records.

Table 4 lists all beach-fill changes reported along the study area
beaches from 1965 to 1974, The initial fill excursion distances in the
table were estimated by applying the volumetric equivalent factor of
8.23 cubic meters of change for each meter excursion per meter beach
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Table 4. Beach-fill evaluation.!
Rl RI1 Fil exouraion Vol sorting Eoourslon  Ret vol Ret exoute ion
Locatio?  profile  1gh 1 distance logses loss i distane
Beach Dete () station  (w) tB’) (3) (m) (-3‘)‘ () Comperit
Urightwille Spring 1965 1.9-7.0 Weo-WES0 5,130 2,290,071 54.6 Campletion of M3 jetty in spring 1966
Spring 1966 3.35-6.1 WBISWMS 2,750 244,080 10.8 331,600 -1.9  2,2%,700 +46.7
Oct. 1966  3.354.0 WBI9-WR21 650 32,1% 6.5
Spring 1970  2.754.6  WBI4m21 1,850 1,053,500 69.2 573,85 -37.7 480,000 +31.50
Carolina Apr. 1965  2,2526.5 CBI6-CRLIS 4,275 2,013,854 57.2 617,250 -25.0 +32.2
Mar. 1967  21.7522.25 CBl2GBI6 500 83,400 20.3
157,240 -11.1 157,250 +10.5
Mar. 1967 22.25-23.5 CBIB-CES5 1,220 231,075 23.0
May 1967 23.0-23.7 CBII-CBS3 00 88,000 15.3 26,800 4.7 +11.6
Aug. 1968 22.0-23.7 CBTI-CPO3 700 74,200 12.9 0 Ko sorting losses
Dec. 1970  22.2523.5 CBI6-CBSS 1,220 265,000 6.4 52,000 -5.2 213,000 +21.2
Dec. 1970 22.2522.6 (CBI6-CB5 335 — ] ' Completion of rubble-mond seasall
May 1971 23.0-26.5 CEN-CELIS 3,500 315,000 11.0 0
Sept. 1971  22.6-22.9 CBS4-CBGL 300 Extemsion of rubble-mund seasal |
Foxt Fisher July 1965  32.7-33.0 . 11,500 6.5 Additional rubble added to res hment
Beach fill placed alarg eroding bluff
Oct. 1967  32.7-33.0 pr.i] 11,500 6.4 Severe loas to 1965 beach fill due
to May 1967 extratropical cyclone
1970 32.7-33.0 Limestone revetment added

!Data fran U.S. Amy Engineer District, Wilmington (1970, 1974) and Jarrett (1977).
Zpistances fran northern end of study area (WB1),




front, The excursion loss due to sorting was determined in the same
manner from estimates on the volume of beach fill lost due to sorting or
from volumetric loss calculations based on the critical ratios of the
beach-fill material. Note that the initial fill distance, the excursion
loss (due to sorting), and the net fill excursion are only comparison
estimates and should not be considered as absolute values. Figure 8
shows the spatial distribution of the beach~fill excursions along the
study area, with an obvious concentration of fill activity in front of
the townships of Wrightsville Beach and Carolina Beach. Areas of
reported net beach fill are shown to extend in some places to
approximately 100 meters (300 feet). Because these values only reflect
the fill excursion remaining after the initial loss period and do not
consider the fill loss due to storm-induced or long-term (annual)
erosion rates, they are slightly misleading. Most fills were placed
after the previous fill had been severely eroded away.

Table 5 presents all historical events influencing beach volumes
since 1965, with a brief description of each event. Storms were
included in this table only if noted beach erosion occurred, if asso-
ciated storm surge was noted, or if the windspeeds were in excess of
80 kilometers per hour (50 miles per hour). A complete list of all
storms during the study period is available in supplemental data
Volume I, Section B,

3. Excursion Distance Analysis.

Selected beach profiles from all stations were plotted at a small
gcale and visually checked for accuracy and acceptability of data
points. Larger scale profiles were then drawn to compare sequential
outlines. Areas of erosion from one sequential profile to the next were
highlighted by a dot-screen pattern., Typical short and long beach
profile plots are shown in Figures 9 and 10. All of the larger scale
plots of the short and long beach profiles are contained within sup-
plemental data Volumes ITI to VIII.

A common base line was established for each sequential profile and
the horizontal distance from that base line to the location of the MHW,
MSL, MLW, -1.83 meters (-6 feet), -3.66 meters (-12 feet), and
-5.49 meters (~18 feet) contours were calculated. These distances were
plotted against time of measurement, and the relative distance between
the first and subsequent distances represents the excursion distance
through time for each contour,

A sample plot from each beach is shown in Figures 1l to 15. A
linear regression ("least squares") line which mathematically "best
fits" all data points is drawn on these plots. One straight line is not
representative of the average excursion rates between the years 1965 and
1975, especially for Wrightsville and Carclina Beaches.

When few data points exist, the scatter due to seasonal fluctua-
tions, prior storm erosion, ete¢., can totally mask the longer term or
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APPROX. EXCURSION DISTANCE OF HISTORIC BEACH FILLS.

APPROX. EXCURSION DISTANCE OF HISTORIC BEACH FILLS.

140

120

¥ & % B

-100

| S E—
- ¢ KLOMETERS 4

SPRING 1970
/N’

- -~
NOTE: 1 m/yr excunion =
= 8.23 m3/yr/mn of basch 1ilh votuma,

OCTOBER 1966 — [~

i3 - SPRING 1965

.-ll -.'.{0

SPRING 1970 /

T

TOWNSHIP OF WRIGHTSVILLE BEACH
MB

| L 1 i 1
<5.0 0.0 5.0 10.0 15.0

DISTANCE (kllomaeters)

T
ML Y

N

tnfluanced by construction of fetty

NOTE: CROSSHATCHING SHOWS
AREA OF AEPOATED NET BEACH FILL.

———y————y
r 0 KILOMETERS 4

| . WOTE : im/yr sxcuraion =
8.23 m/yrim of beach-11A volums.

APR. 1865
AUG 1968
MAR 1067
MAY 1067
DEC. 197D
way 187y

LI

AR

_ocT o

]

LL Tt

L 3
= L) NOTE: CAOSSHATCHING BHOWS
AREA OF REPORYED NET BEACH FILL

i AN

-

TOWNSHIP OF CARDLINA BEACH K8 FB
i 8 | I )
20.0 25.0 30.0 35.0
DISTANCE (km}

Figure 8. Distribution of beach filis along study area.
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Table 5.

Historical events affecting beach volumes during
study period, 1965-1975,

Date Location Cozments
1965
Spring Wrightsville Beach | Beach fill 1,9-7.0 km; 47-m net excursion
Apr, Carclina Beach Beach fill 22,2~26.5 km 32-m net_excursion
24 May Storm; high wind, rain, beach erosion
July Fort Fiaher Beach Beach fill and revetment 32.7-33,0 km:
6.5-m pet excuraiom
1966
Spring Wrightsville Beach [ Beach fill 3.4-6.l1 km; l0-m net excursion
8pring Magonboro Inlet Completion of Hasanboro jetty
10-11 June Tropical Storm Alma passed offshore
9 July ) Storm; l47-km/h (92 mi/h)} winda
Oct. Wrightavilla Beach Beach fill 3.4-4.0 km; 6.5-m excursion
1967
Mar, Carolina Beach Beach fill 71.7-23.5 km; 10.5 m net
excuraion
15 Mar. Storm; 71-112 km/h (45 70 mi/h) winds
29 May Extratropical cyclone; severe erosion
Qect. Fort Fisher Beach Beach fill 32.7-33.0 km; 6.5—m excuraion
24 Nov, Storm; 96-km/h (60 mi/h) winds
28 Dec. Storm; 122-km/h (76 mi/h) winds
1968
7-12 June Tropical Storm Abby
Aug, Carolina Beach Beach £ill 23.,0-23.7 km; l3-m net excuraion
19~20 Cct. Hurricane Gladys
1969
1-2 Nov. Storm; 96-km/h (60 mi/h) winds
197¢
Mar,~-May Wrightaville Beach Beach fill 2,7-4.6 ¥m; approx, 31,5-m net
excursion
16-17 Ang, Storm; 2.5-m (8 fr) waves, riptides;
112°%xw/h (70 wifh) winds
30-31 Oct, Storm; beach erosion
Dec. Carolina Beach Beach fill 22.2-23.5 km; 2l-m net excursion
Dec. Carolina Beach Completion of rubble-mound seawall
Fort Fisher Beach Limestone revetment added
1971
26-30 Jan. Stomm; near hurricane-force winds
13 Feb, Stom; near hurricane-force winda
5-7 Apr. Storm; 109-km/h (68 wi/h) winds
Mar. Carolina Beach Besch fill approx. 23,0-26.5 km; ll-m net
excurgion
16~18 Aug. Storm; 3-m (10 ft) seas
27 Aug. Tropical Stom Dora; 96-km/h (60 mi/h)
winds, l.2-m (4 ftr) surge
Oct. Hurricane Ginger; 147-tm/h (92 mi/h) winds,
1.2~m (& ft) surge
1972
24 July Storm; 83-km/h (52 mi/h) winds
1973
9-10 Feb, Storm; 30-km/h (50 mi/h) winda, high seas,
erosion
22 Mar. Storm; 3-4-m {10-12 £t} sgeas, high erosion
Sept. Carolina Beach Extension of rubble-mound seawall
1974

30 Wov.-1 Ddc.

Storm; erosion

NOTE:

Dates of beach fille, coastal conatruction, ete.
month or season in which they were completed.

calendar date.

are given only as
Dates of storma are given as
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man-influenced excursion rates. The plots (Figs. 1l to l4) are, in one
way, atypical of all profile plots taken along each beach because each
of these profiles has some data taken below MLW, whereas the majority of
profiles along the entire study area do not. This means that analysis
of contours below MLW is not worthwhile due to the paucity of data, and
that available data can result in misleading or questionable excursion
rates. Only Wrightsville and Carolina Beaches have high temporal
densities of data points for each MHW, MSL, and MLW contour and,
consequently, only plots from these beaches were redrawn at yet a larger
scale and analyzed. All large-scale plots for Wrightsville Beach and a
representative set from Carolina Beach are contained in Appendixes A and
B, respectively; all smaller scaled plots for Masonboro, Kure, and Fort
Fisher Beaches are In Appendixes C, D, and E, respectively.

Historic events which may have affected the beach erosicn-zaccretion
(excursion distance) are indicated on each excursion distance plot for
Wrightsville and Carolina Beaches (Figs. 16 and 17). A circle is placed
on a data point measured shortly after localized storm activity (see
Table 5), and an arrow is placed at the approximate time beach fills
were completed. The same profiles in Figures 11 (WBL5) and 12 (CB71)
are shown in Figures 16 and 17, respectively, drawn at the larger time
scale and with the historic events indicated. Excursion rates between
the beach fills (seasonally averaged response shown as a dashline) can
now be identified and quantified, Localized storms account for many of
the sudden losses in beach volume. However, some erosion (loss of
excursion distance) occurs at times other than those indicated in
Table 5, possibly due to localized storms of lesser magnitude, but
probably due to erosion from swell waves generated from distant storms.

Sequential beach profiles taken between January 1970 and December
1974 for profile WB15 are presented in Appendix F, These profiles are
presented to aid the reader iIn visualizing the postfill response of
Wrightsville Beach and thus to help interpret the results shown 1in
Figure 16,

The following discussion outlines the general method of analysis
uged on all excursion distance plots for Wrightsville and Carolina
Beaches. A schematic plot, similar to the MLW excursion distance plot
for WBL5 (Fig. 16), is used as an example and is shown as Figure 18,
Section IV.4 contains a beach-by-beach discussion and quantification
detailing the effect of natural and manmade influences on each.

The three most prominent features exhibited by Figures 16 to 18 are:
(a) the long-term erosional-aceretional trend is approximately constant
{linear) between beach-fill periods with minor fluctuations due to
seasonal storm-induced erosion and accretion cycles; (b) the placement
of a fill results in a sudden positive spike in the excursion distances;

and (c¢) immediately following a significant beach fill, loss of material
nccurs at a rapid rate which gradually decreases to equal the long-temm

recession rate.
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The long-term change for most beaches in the study is negative,
which signifies a long—term erosional trend. This is due primarily to
the inability of the beach to return to its original position after a
particularly severe winter storm period or after a very severe isolated
storm (e.g., a hurricane or tropical storm). During storm activity,
sediment 1is eroded off the upper section of the beach profile and
transported either alongshore in the littoral drift or offshore.
Particularly severe storms can result in sediment being transported
sufficiently far offshore to preclude its return to the beach face under
more favorable conditions, thus resulting in a sediment deficit and,
hence, erosion. Also important during the erosional phase of beach
behavior is the continual exposure of "fresh" beach sediment which may
not have the appropriate sediment distribution/characteristics for the
dominant wave conditions. This means that under erosional conditions,
sorting losses can continually cccur (resulting in long-term losses),
the magnitude of which is dependent upen the degree of mismatch between
the distribution of the exposed sediment to that which is more suitable
for the wave conditions. Another cause for the long-term erosional
problem is a rise in sea level position. Based on an equilibrium bottom
profile, Bruun (1962) quantified the volumetric erosion loss per unit
length of shoreline (V) as

Vv = (e + d) (X) (1)

where X 1s the rate of shoreline recession, e is the berm crest MSL, and
d is the limiting depth between nearshore and of fshore processes,

Limiting depth (d) is approximately -8.2 meters (MSL) based on
inspection of long profiles from Wrightsville and Carolina Beach data.
Horizontal distances to this depth for the contraol cells are presented
in Table 6., The rate of shoreline recession is expressed by

ab
S R )

where a is the rate of local sea level rise, and b is the distance from
the initial shoreline to the limiting depth.

Table 6. Volumetric and excursion losses due to rise in MSL.
Distance (b) Volumetric Excuraion rate
to limiting loss/unit due to sea

depth of lgth of beach level rise
Littoral Cell -8.2 m (w3 /yr /m) (m/yr)
Wrightsville Beach 225 0.83 -0.10
Masonboro Beach 210 0.78 -0.10
Carolina Beach 190 0.70 -0.09
Kure Beach 180 0.67 -0.08
Fort Fisher Beach 220 0.81 -0.10
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The rige in MSL during the study period, based on the averaged
trends at Portsmouth, Virginia, and Charleston, South Caralina (Hicks,
1972), was approximately (.37 centimeter per year, The computed annual
rate of volumelric and excursion loss due to the rise in sea level Far
the five beaches is given in Table 6.

The rapid loss of beach material immediately after the placement of
a8 beach fill can bhe gplit into two components--a long—term component due
to the ongoing long=~term processes, and an initial component due to
enhanced sorting by slope read justment. The continual sorting type
losaes are obviously compounded by beach-fill activity when sediment
which has a2 different distribution to the native beach sediment is used
ag the fill material. WNot only is the magnitude of the sorting losses
higher because of the generally greater mismatch between the new
distribution and the desired distribution, but also the rate of loss is
increased due to the increased exposure rate to wave activity as a
result of gediment movement due to slape read justment,

The long-term component can be represented by the slops af the line
of best fit through all data pointe after time t=y; (Fig, 18), such
that at any time, t,

l. = =t (3)

where 1y is the long-term excursion loss (gain) at time t, and a is
the slape of the linear section of the excursion distance plot.

Data from this study indicated that after 1 to 2 yeare Following
beach-fill completion, the beach fece generally eroded hack during a
winter storm period to its approximate prefill position, Both
Figures 16 and 17 show this behavist snd subsequent secretion of the
beach face during the ensuing summer period. This mesans that after
approximately 2 years most of the beach-Fill material has been exposed
to the sorting action of wave activity and for this period on (i.e.,, the
time during which the long-term excursion rates were calculated), the
enhanced losses due to the sorting of beach-fill material should have
been minimal.

To quantify the initiel loss component, the long-term component was
subtracted from the excursion distances (shown by the dashline in
Fig. 19). The time =cale was reset to zero at the time of fill (e=0),
and so the initial less of beach fill after time t was St' Values
of 8§ (Fig. 19) for varying time increments up to t=t; were plotted
on gemilog paper. Figure 20 shows the results of these plets for the
MLW, MEL, and MHW excursion curves of WBl5, The results from this
profile are typical fer all profiles and indicate that the initial loss
componant due to sorting and beach-slape adjustment can be mathe-
matically represented by an exponential equation of the form

S = (£ (1-107%) For 0 <t < ¢, (4)
r 1 1

i~
1
(%

r



EXCURSION DISTANCE

initial fill excursion

= total excursion loss at timae t

total fill excursion remaining after time t

= long-term excursion loss {gain) at time t

fraction of fj lost at time tj
initial excursion loss at ime t due to slope readjustment
and sarting

= time at which essentially ell initial losses due to dope
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Figure 19. Definition sketch for beach-flll response.
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where k 1s the slope of the line of best fit of the semilog plot of §
versus t, f; is the initial fill excursion, { is the fraction of

F; lost afrer initial losses (i.e., at t=ti)}, and S; is the

excureion loss at time t due to sorting and slope adjustments of a
beach fill.

Wote that the exponential form of equation (4) implies that the
initial lesses, although very small, continue indefinitely. However,
rhe excursion plots indicate that after 1 to 2 years the excursion loss

Lo slope adjustment and initial sorting cannot be separated from the
scusconal and long-term losses. Hence, for practical reasons, the

nitial loss will be mathematically considered complete when 95 percent
of {f; ie lost (i.e., at t=ti).

The total excursion loss, D , at time t after fill placement, 1is
the sum of equations (3) and (45.

b, = ¢ £,(1-107%%) + at (s)

or, the total beach excursion relative to the prefill position, Ees
at any time t after a fill, is

E = £, [1—§+ Cm'kt] - at . (6)

Equation (6) is an important tool which can be used to evaluate
historic beach fills and to design future omes, This equation <an be
used in two ways, First, if a given design lifetime of a fill is
reguired, substituting E,.=0 and t equal to the desired design life,
then equation (6) is solved to give the initial fill excursion (and
volume). Second, for a given volume of fill, or alternatively, for a
given initial excursion, the time t=t, at which the beach returns to
its prefill position (E{=0) can be determined (i.e., the "useful
life" of the fill can be determined). These calculations can be used to
quantify the effectiveness and value of a given beach fill. However,
fhe assumption made within these interpretations of equation (6) is that
the beach fill has lost its effectiveness as soon as the beach face
hetween the MLW to MHW contours returns to its initial, prefill
position. It must be noted that in addition to providing a horizontal
excursion of the beach face, beach fills provide, either directly or
indirectly, three other functions which retain their value even when the
initizl excursion is lost. The direct value is that the elevation of
the berm{s) and sometimes dunes is increased during beach-~fill opera-
tions so that a larger volume of material seaward of the backdune is
available to absorb the erosional tendencies of storm waves. This pro-
vides an additiomal degree of protection to the backshore which was not
present prior to the fill placement. Indirectly, beach fills result in
an increase in sand on downdrift beaches, and produce slight decreases
in the nearshore to offshore bathymetry due to the redistribution of
beach-fill material offshore as a result of slope readjustment and
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sorting. These decreased depths provide an added measure of protection
to the beach by forcing waves to break farther offshore. Individual
designs of, and the nature of the sediment used in each beach fill,
dictate the degree to which these factors benefit the beach area.
Consequently, they will not be further addressed in this analysis, but
must be kept in wind when dealing with the design or evaluation nf a
beach fill.

An interesting feature of Figure 20 is the relative magnitude of the
k values {(the decay rate) of the MLW, MSL, and MHW curves. The greater
the k value, the faster the rate of initial loss (erosion). Conse-
quently, the results show that the MHW contour eroded at a faster rate
than the MSL contour, which in turn eroded at a faster rate thaun the MLW
contour. In other words, the slope of the beach face readjusted itself
and became less steep during the initial loss period.

4, Beach Behavior from 1965 to 1975.

(a) Wrightsville Beach, The behavior of Wrightsville Beach in
response to coastal processes during the 1965 to 1975 decade is best
described by conveniently dividing Wrightsville Beach into three
gections-~the northern, central, and southern sections,

The northern section can be characterized as a slowly accreting
beach with the rate of accretion falling from a maximum of 1.8 meters
per year at Mason Inlet to near zero about 1.75 kilometers farther
south., Figure 21 shows the excursion plots for WB3, tynical of the
beach behavior in this northern section. Superimposei upon the average
accreting excursion is a seasonal variation of approxirately 20 meters,
The minimum excursion distances occur during the first three (winter)
months of the year and the maximum from July to September. Figure 21
shows that the beach in this section is able to respond to storms,
particularly noted are those in February and March of 1973, and to
rebuild itself without artificial renouristment.

Between the points 1.75 and 5 kilometers, the central section of
Wrightsville Beach has been eroding constantly since 1965. The excur-
sion plots for WB16 (Fig. 22) are typical of the area of maximum erosion
experienced around the northern area of the town of Wrightsville Beach.
Beach fills in 1965, 1966, and 1970 were placed to protect this —own;
however, the continued high erosion rate nullified those efforts. The
data are too sparse to obtain seasonal variatioms before 1970, but zince
that time the seasonal excursion within the central section was
approximately 25 meters.

The behavior of the southern l.5-kilometer section of Wrightaville
Beach has been dominated by the construction of the northern jetty on
Masonboro Inlet. During the first 4 months in 1966 (prior to the 1966
beach fill), the nearshore zone of the beach immediately north of che
nearly completed jetty accreted by up to 40 meters, especially che MW
and MWL contours of profiles WB49 and WB50. This accretion fill=zt
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cxtended northwards with time into the area of beach fill and, soon
after the completion of the jetty in spring 1966, the southern end of
Wrightsville Beach had accreted by approximately 30 to 40 meters. From
1968 until the end of the study period, the accretion fillet underwent
only minor changes with seasonal fluctuations of 15 to 25 meters.
Figure 23 shows typical excursion plots of WB47,

The long-term excursion rate values for the entire beach are shown
in Table 7. The average erosion {excursion loss) per year along
Wrightsville Beach due to the rise in sea level is 0.10 meter (see
Table 6). This value must be subtracted from the measured excursion
rates to determine the average annual loss of beach excursion due
primarily to longshore processes. These values are shown in Table 7 and
are plotted in Figure 24,

The average variation in seasonal excursion remained fairly constant
1long the entire beach, with a maximum variation occurring at MLW and a
minimum at MHW. The difference ih the seasonal excursions between
4LW-MSL and MHW-MSL gives an indication of the average change in beach-
face slope from winter to summer beach profiles. Table 8 gives the
sverage excursion values from 325 observations along Wrightsville Beach;
Figure 25 provides a visual interpretation of the relative change 1n
seasonal excursion distances.

There were insufficient data points to gquantify the response of
Wrightsville Beach to the 1965 and 1966 beach fills. However,
Fipure 26 shows the semilog plots of the initial excursion loss after
the 1970 beach fill. These plots show the combined results from eight
rrofiles and are slightly different from Figure 20. The values of
excursion loss at time t after beach-fill placement have been normalized
by dividing them by the total initial excursion loss, (f;, and
hence, the results from many profiles can be combined to compute the
average exponential decay constant. Table 9 gives these values for the
MLW, MSL, and MHW contours, together with values of {, the proportion of
the MLW to MHW fill excursion which is lost due to sorting and slope
adjustment, the initial fill excursion, and the average long-term loss
rate, The relative differences in magnitude of the k values for the
three contours (shown in Table 9) indicate that the MSL contour eroded
faster, on the average, than either the MLW or MHW contours, thus
nroducing, as expected, a concave beach profile. The average long-term
2xcursion rate of =3.8 meters (erosion) per year for all three contours
indicates that once long-term slope read justments occurred, the average
beach slope did not change from year to year.

(b) Carolina Beach. Like Wrightsville Beach, three sections of
Carolina Beach (northern end, north-central, and southern half) were
=ffected differently by the action of the coastal processes from 1965 to
1975.

The northern end extends from Carolina Beach Inlet southward for
1.5 kilometers to the 22-kilometer point (measured from the northern
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Table 7. Average long-term excursion rates along
Wrilghtsville Beach.

Frofile Distance from Avg Avg excurdlon
gtation north study excursion rate due to long-
boundary Tate shore processes
(km) {m/yr) {m/yr)
WB1Z 0.00 -1.2 -1.1
Wh2 0.55 1.7 1.8
WB3 1.11 1.3 1.4
WR4 1.41 0.6 0.7
WB6 1.74 -0.9 -0.8
WB7 1.80 -1.6 ~1.5
WB9 2,01 -1.3 -1.2
WBll 2.32 -5.0 -b .4
WB13 2.61 =4.6 =4.5
WB15 2,91 -5.8 -5.7
WH16 3.22 =5.1 -5.0
WB17 3.24 -4, 1 -4.0
WB19 3.52 —4.2 =4.1
WB21 3.82 -4.3 -4 .2
WBE25 4,12 -1.3 -1.2
WB29 4,42 -2.1 -2.0
wWB33 4.72 =4,1 -4.0
WB36 5.01 -0.3 -0.2
WB39 5.32 -0.2 -0.1
WB42 5.62 -D.6 ~0.5
WBa4 5.91 0.0 0.1
WB4L7 6.22 -0.5 =0.4
WB49 6,52 -4.1 -4 .0
WB502 6.71 ~2.7 -2.6

liygsed on a 0.10-meter loss in excursion due to a rise in sea level.

2profiles within inlet ehoals.

COMPUTED VALUES USING B = 1100
R COMPUTED VALUES USING B = )
reresireinieensss COMPUTED VALUES USING 8 = 300
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Figure 24. Comparison of measured and computed volumetric
change along Carolina Beach.
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Table 8., Seasecnal variation in MLW, MSL, and MHW position
along Wrightsville Beach.

Contour Avg seasonal Excursion minus
excursion MSL excursion
{m) {m)
MLW 28,9 6.6
MSL 22.3 0
MHW 20.6 =L
Avg 231.9

WINTER PROFILE

MSL Sl S SEm S S—

SUMMER PROFILE

Figure 25. Relative seasonal change In beach slope for Wrightsville Bsach .
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Table 9. Wrightsville Beach, 1970 beach-fill data.
Avg Avg Initial
Contour . exponential long-term beach-fill
decay constant excursion excursion f; ¢

(k) (m/yr) (m) o
MLW 0.58 -3.8 75.0 0.380
MSL 0.63 -3.3 717.9 0.79
MHW 0.59 -3.8 76.9 0.82




limit of the study area). Similar to the northern end of Wrightsville
Beach, this section of Carclina Beach slowly accreted during the study
period with a2 maximum rate of 15 meters per year at the tip decreasing
to near zero at 22 kilometers. As shown in Figure 27, this areas
responded naturally to storm-inducad erosion and, consequently, no
beach fills were placed during the study period. The average seasonal
excursion was 12.8 meters for the northern section.

The north-central section extends from the 22- to 23.5~kilometer
points and encompasses both the only significant change in beach
orientation along Carolina Beach and the northern end of the town of
Carolina Beach. This section suffered the highest measured annual
erosion rate of the entire study area, and estimates of that rate vary
between 5 to 40 meters per year. The range is large, and errors in the
estimation of the excursion rates from the excursion distance plots
probably account for some of the scatter in the rate values, Because of
the high erosion rates, and since the northern end of the town of
Carolina Beach is exposed to this erosion {(see Fig. 4), six beach fills
were placed in this section between 1965 and 1971, three of which were
connected with the experimental deposition basin in the throat of
Carolina Beach Inlet, The excursion distance plots for CB&4 (Fig. 28)
reveal rapid erosion after each beach fill and the continued 1oss of
beach material despite the beach~fill activities. The seasonal
excursion distance within this area is about 19.5 weters.

The southern half of Carolina Beach experienced mild erosion rates
of approximately 5 meters per year. Beach fills in 1965 aund 1971
provided protection to the southern end of the Carolina Beach township
because the net excursion in 1974 was still positive; i.e., more sand
was placed on the beach by the beach-fill projects than was eroded away
during the 1965-74 period. Figure 79 shows an example of the excess in
excursion distance for CBl19 and also shows that the average seasonal
variation along this section is relatively small with a mean value of
approximatealy 7.6 meters,

The long-term excursion rates fcr the entire beach are shown in
Table 10. The representative value of average annual excursion loss
along Carolina Beach due to the rise in sea level is 0.09 meter (see
Table 6). This value must be subtracted from the measured excursion
rates to determine the annual excursion loss due to longshore processes.
Representative values are given in Table 10, and a complete set along
Carolina Beach is plotted in Figure 30.

Table 11 shows the average MLW, MSL, and MHW seasonal excursion
values for the entire beach and the relative differences in seasonal
variation between these contours. The average change in beach slope at
MSL from a summer profile to a winter profile was 0.2°, 1.e., 1 on 286,
Figures 31 and 32 show the semilog plots of the normalized initial
excursion loss values versus time after fill placement for the 1965 and
1971 beach fills, respectively. Since there is a lack of data for the
1971 £ill, all MLW, MSL, and MHW values from profile CB93 were combined
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Table 10,

Average long-term excursion rates
along Carolina Beach,

—-=

Distence Irom AvE AJp EXcursion
Profile worth study excuruion rate due to long-
statlomn boundary raLe shore procesgesl
{km) i/ yr ) {mfyr)
cit? 20164 9.0 9.1

CR2 20.94 15.0 15.1

crio 13.70 6.0 6.1

CELS I 15 -12.9 ~12:48

CRl4 i1.23 =179 =178

G2l 22,95 -20.9 -20.8

CRil TE 48 s -22.4

CEADR 23153 ~10.4 10.3

CEé&b 22,54 =5.3 =5.12

CHS3 22,59 =18 % -18.4

CHGL 22.72 =58 =3

cB7l 23.03 =214 -23.3

CERA 23.36 -19.;3 =14.,1

CER3 23.604 ~B2 #5l

CR9G 4. 24 =3.8 =57

creg 25.20 -4.9 <b.8
Ch10f 26.07 ~3.4 =3.3

cull? 16,56 -1.0 -0.9

Casl9 26,68 ‘_ﬁl.ﬂ =13 d

lREﬁtd on & 0.09-meter logs in excurdion due to & rise in esa level.

2proliles within inlet shoals.

COMPUTED WALUES USING (3 = 400
COMPUTED VALUES USING 3 =300
COMPUTED VALUES UsING § =200

ANNLAL VOLUME CHANGE RPCR UMIT LENGTH OF BEACH {mjlyn'm)
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Figure 30. Comparison of measured and computed volumetric

change along Wrightsville Beach.
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Table 1l1. Seasonal variation in MLW, MSL, and MHW
positions, Carolina Beach.
Avg Excursion minus
Contour seasonal MSL excurslon
excursion
(m) (m)

MW 18.2 0.4

MSL 17.8 0

MHW 16.4 -1.4
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to calculate the exponential decay constant for the sorting and slope

ad justment losses. Table 12 cantains all relevant data for the 1965 and
1971 beach fills that could be confidently extracted from the excursion
distance plots,

Table 12, 1965 to 1971 beach-fill data, Carolina Heach.

Avg Avg
Beach fill Avg exponential decay count (k) initial long-temm
fill excursion
excursion
MLW MSL MHW Avg (m) {m/vr)
1965 0.83 0.98 0.70 0.84 25 -, 2
1971 - - - 0.83 45 J -4.2

(¢} Masonboro, Kure, and Fort Fisher Beaches. Because of insuffi-
cient and nonconsistent temporal distribution of excursion distance
data, beach response in terms of long-term erosional-accretional rates,
beach fills, and storm events cannot be described for Masonborec, Kure,
or Fort Fisher Beaches., Therefore, anly a brief statement concerning
the relative difference in excursion distance between the first and
final data points can be made; however, because of seasonal variation
and possible poststorm excursions, even this may be misleading.

From 1966 ta 1973, the erosional loss at Masonboro Beach was
generally 10 to 30 meters. However, two profiles (MB2Z and MB5), which
are located in the vicinity of the only significant changs in beach
angle along Masonboro Beach, show losses of 80 to 100 meters, The
excursion differences for most profiles fall within the passible range
of seasonal or poststorm excursion ranges and, consequently, the actual
long-term loss on Masonboro Beach may not be reflected by the above
values,

The availability. of excursion distance data for Kure Beach and Fort
Fisher Beach is even less than that for Masonhoro Beach, with data
collected orly from late 1969 to early 1973. Differences in excursion
positions between those dates for both beaches vary from +5 to
-20 meters, but again, estimated seasonal variation from two profiles of
10 to 15 meters makes any conclusion on the lopg-term response of these
beaches impossible.
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V. LONGSHORE SEDIMENT TRANSPORT ANALYSIS

1. Introduction.

The procedure to mathematically predict the volume of sediment in
the littoral drift requires knowledge of the magnitude and direction of
the energy flux due to waves breaking along the study area beaches. To
determine this quantity, a wave climate representative of the annual
wave conditions measured or experienced in offshore waters must be
established. The wave climate, in this case in the form of a set of
wave heights with different periods and directions, must be "routed"
towards shore by a wave refraction model until the waves break on or
near the beach. Information on their breaking angles (relative to the
beach orientation), breaking wave heights, and wave speed at breaking
are determined and used to establish the longshore components of the
energy flux for both the northerly and southerly directions.

The quantity of sediment carried by the littoral drift in each
direction is found by multiplying the magnitude of the energy flux by a
conversion factor (U.S. Army, Corps of Engineers, Coastal Engineering
Research Center, 1977). However, uncertainty exists in the exact value
of that factor (Vitale, 1980), and therefore, it will be recalculated
for this study area by comparing the known time rate of volumetric
change at Wrightsville Beach and Carolina Beach to the predicted values
of the energy flux at those beaches. The recomputed conversion factors
will be used to estimate the annual northerly and southerly longshore
transport quantities and the volume of material lost into the adjacent
inlets.

2, Wave Refraction Analysis.

(a) Wave Climate. Wave climate was determined from a joint
probability evaluation of wave gage data at Johnnie Mercer's Pier and
wave observation data from Wrightsville Beach. The directional
distribution of wave height and wave period, calculated from the wave
observation data, was assumed to hold for the Johnnie Mercer's Pier
data. Consequently, wave angles at the gage were statistically
correlated to the wave observation data observations. The SSMO and
Frying Pan Shoals wave data were not used due to a lack of confidence in
data recording (Harris, 1972),

Under random sea conditions, the distribution of the values for wave
height, period, and direction 1is continuous. However, to perform the
wave refraction analysis, a representative set of wave height, period,
and direction conditions was needed. Consequently, the distribution of
wave height was divided into three ranges and the period into six groups
with midrange values of 3, 6.5, 8.5, 10.5, 12.5, and 16 seconds. The
angles of wave approach were also divided into four sectors (northeast,

62



east, southeast, and south), with the wave statistics from the inter—
mediate directioas (north-northeast, east-northeast, ete.,) being incor-—
porated proportionately into the four primary directiona, Figure 33
shows these approach angles relative to the shoreline orientation,

The distribution of wave height war converted to an equivalent
distribution of wave energy (wave height squared) and divided into three
ranges, The wave height corresponding to each of the midrange values of
wave energy was then determined. The offshore wave beight and approach
angle correspanding to each of the three nearshore wave heights were
calculated faor each period and nearshore angle condition, Hoth the
offshore wave direction and refraction cuefficients were detemined by
using Snell's Law, and the shoaling coefficienls were calculated by the
ratio of nearshore and offshore depths, The gffshnre wave heights cor-
responding to each of the three nearshors wave heighits were calculated
by dividing the nearshore height by the product of the refraction,
shoaling, and friction coefficients, Explanation of the development of
the friction coefficient is detailed later in Section (c¢). The three
offshore wave heights used in the analysis were 0,32, 1.40, and
2.47 meters.

The probability of occurrence (expressed as 2 percentage) of a wave
approaching the study area from each of the four directions, with a wave
height and period falling within one of the thres height ranges and six
period ranges (i.e., 72 different cases), was calculated from the data
sets for cach season; i.e., winter (December, January, and February),
spring (March, April, and May), summer {(June, July, and Abgust), and
fall (September, October, and November), This information is presented
in Table 13,

The percentage of occurrence of many of the wave height-period-
direction combinations is less than one. To reduce excessive and
unnecessary analysis costs, it was decided that satisfactory results
could be achieved by using only enough wave combinatblons so that, for
each season, 95 percent of nccurrence by wave energy of all possible
combinations of height, perind, and direction waz modelad., Selection of
seasonal wave types was based on the summation of percentage of
occurrence by wave energy of thase wave conditions with the highest
percentage until the 95-percent criterion was satisfiad., Summation to
95 percent by wave energy resulted in a representation of the wave
climate by approximately 98 percent of the observed wave types. Table 14
shows the offshore wave climate chosen to represent the average seasonal
conditions measured along the study area. The average annual climate is
represented by the arithmetic average of the sessonal valueg for each
combination of wave height, period, and direction.

The final step in the selection of the wave climaLe data was a
caltbration check using the wave refractinn model. The annual wave
climate sets were refracted toward shore and combined asccording to their
percentage of occurcence {see Section V, 3), The directional
distribution of the wave energy at Wrightsville Yeach was compared to
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Figure 33. Wave directions used In refraction analysis.
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the measured distribution calculated from the wave observation data,
Considering the errors inherent in the visual data collection method, in
the data analyses techniques, and errors resulting from presenting the
continuous distribution of wave approach angles as approach sectors,
Table 15 shows a favorable comparison.

Table 15, Predicted and measured distribution of wave energy at
Wrightsville Beach.

Sector Sector bisector Pct wave energy
(rel. to North) Predicted Me asured
1 60° 0.8 1.4
2 103.5° 28.0 31.2
3 120° 36.0 8.7
4 137.5° 35.0 28.2
5 180° 0.2 0.8

(b) Bathymetric Data. The wave refraction model requires knowledge
of the general bathymetry offshore from the study area to accurately
refract the approaching wave sets. The bathymetric data was provided on
a 150-meter (500-foot) square-grid spacing which extended from the MLW
position of the shoreline to a depth of approximatley 20 meters
(65 feet), L5 kilometers (9.4 miles) offshore. The nearshore depths
were interpolated from the long beach profiles and the greater offshore
depths were measured from 1978 National Ocean Survey (NOS) nautical
charts,

The offshore bathymetry of the study area is quite irregular and a
qualitative graphical representation of it is shown in Figure 34. This
figure is a three-dimensional line drawing display of the data generated
by a computer graphics program, and consequently the offshore
representation is quite accurate. However, the Iinterpolation scheme
used by this program distorted the shoreline position, and a dot screen
pattern has been included to alleviate this visual distraction.

(c) Wave Refraction Maodel. The numerical model used for the wave
refraction analysis 1s a modified version of the wave refraction model
developed by Dobson (1967). Dobson's model requires the wave ray to
originate in deep water, a condition which is not always practical (or
economical relative to computer costs) for long-period waves., There-
fore, a subroutine was added to account for the refraction and shoaling
of the wave ray which occurs in the deeper offshore regions. This
routine assumes that bathymetry in the offshore region has straight
and parallel contours. Snell's law is used to compute the refraction

coefficient and the change in the wave angle at an economically more
reasonable "offshore" boundary for the model. The partially refracted

wave ray is then used as the starting condition for Dobson's numerical
model which integrates the wave ray through shallower regions toward the
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Figure 34. A three-dimensional line drawing representstion of the offshore bathymetry
(view looking onshore from southeast).



MSL shoreline. For this study, the numerical model offshore boundary
extended to about the 20~meter (fi5-foot) depth contour (MSL), about
I5 kilometers (9.4 miles) ofFshare,

A second modification to thé oripginal program was the addition of a
subroutine to account for energy losses due to friction. The wave
height, H, at any point along the wave ray can be represented by

Ho= Hy-Kp*Kg K¢ (7)

where H, i[s the deepwater wave height, K, is the refraction
coefficient, K, is the shoaling coefficient, and K¢ is the friction
coefficient.

Dobson's (1967) original model calculated both the refraction and
shoaling coefficients. The additional subroutine calculates the fric-
tion coefficient by integrating an expression developed by Skovpaard,
Jonsson, and Bertelson (1975) along the wave ray from deep water to the
point of interest (optionally the point of wave breaking). The integra-
tion 1s carried out using a Lrapezoidal integration scheme. The local
bottom friction facteor is calculated from the local wave conditions by a
numerical algorithm developed by Fritsch, Shafer, and Crowley (1973).
The expression for the wave friction coefficient, as given by Skovgaard,
Jonsson, and Bertelsen, further requires a value for the equivalent
(Nikuradse) bottom roughness., A field cbservation en a sandy coast by
Iwagaki and Kekinuma (1963) found thab the bottom roughness ranged from
I to 2 centimeters. For this study, the value of equivalent bottom
roughness was determined from the calibration of offshore SSMO wave
height f(wave energy) data which had besn routed inshore to wave height
(wave energy) data measured at Johnnie Mercer's Pier gage. Although
somz uncertainty exists with the 35MO data, as noted in Section 2(a), it
was used here In a zimple test to determine whether or not the
literature values for hottom roughness were applicable on this part of
the coast. A value of 1.5 centimeters gave the best results for the
comparison of computed and measursd wave energy at the beach, and this
value falls within Twagaki and Kakiouma's range of values.

The effect of including bottom friction in the wave refraction model
is a reduction in the wave height and, therefore, wave energy as the
wave ray progresses inte ghallow water. It has no effect, within the
limits of the linear theory usad by Dobson (1967), on the direction of
wave propagation; however, reduction of the wave height does affect
breaking conditions, as 4 wave with a reduced height can propagate
closer to shore before breaking. For waves in shallow water, solitary
wave theory defines the breaking condition

H
3= 0.78 (8)

where H is the local wave height, and d is the local water depth.

The third modification to Dobszon's model was a routine to stop
integration of the wave ray when the ratio of wave height to local water



depth exceeds 0.78., To determine the depth at any point along the wave
ray, the model uses an algorithm which fits a polynomial to the depth of
the surrounding square of eight grid points (relative to that wave ray).
Under the rapidly varying bathymetric conditions which exist within the
study area, the algorithm often computed nonrepresentative depth values
which in turn resulted in offshore wave breaking and caustic (wave
crossing) conditions. To help alleviate this problem, the depth grid
spacing was increased from 150 meters (500 feet) to 300 meters

(1,000 feet), and this modification resulted in a significant reduction
in the number of offshore caustics and wave breaking. In addition to
this problem, diffraction {i.e., the lateral spreading of energy along
the crest of a wave), an important process in "smoothing-out" peaks in
wave energy (and height), is ignored by Dobson's model.

Figures 35 and 36 are two computer-generated wave refraction
diagrams for a wave approaching from the east with an offshore wave
height of 1.4 meters and a period of 10.5 seconds. Figure 35 shows that
many of the wave rays cross before reaching the beach or break offshore.
Since each wave ray is propagated independently toward the shoreline,
the model is "unaware" of the possibility that any two or more wave rays
may c¢ross. Linear wave theory is not valid under these conditions;
therefore, all wave rays which crossed before reaching breaking condi-
tion must be eliminated from the analysis. Figure 36 shows the same
wave propagation as in Figure 353; however, all crossed wave rays have
been eliminated. The energy, and therefore, wave properties like
height, celerity, and angle along a wave crest between two adjacent
noncaustic rays, was assumed to be proportional to the energy values of
these noncaustic rays. Hence, breaking wave conditions at all locations
along the beach were found by linearly interpolating the values between
adjacent noncaustic wave-ray locations.

Another shortcoming of Debson's (1967) model is that the influence
of tidal jets and currents near inlets on wave refraction is not
considered. Together with the fact that bathymetric changes are rapid
in the vicinity of inlets, the resulting values of wave height, angle,
and celerity at those locations must be considered with some skepticism.

Computer plots showing the results of the refraction analysis for
l.4~meter waves for each wave period and for all four wave approach
angles are contained 1in Appendix G. The difference between the results
of waves having the same period and approach direction, but differing in
height, is simply a slight difference in the breaking position of the
wave along the same wave-ray path.

3. Energy Flux Computation.

The longshore component of wave energy flux, Py, is defined as

(U.S. Army, Corps of Engineers, Coastal Engineering Research Center,
1977; Vitale, 1980)

P = ?%‘HZCg sin 2 a (9)
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where H is the wave height, Cg is the wave group velocity, and @ 1is the
aungle the wave crest makes with the shoreline, Usually the breaking
wave characteristics (Hp, Cg,, and @}) are used to represent the wave
energy flux entering the surf zone.

Each wave type was refracted toward shore by the refraction model.
The breaking wave values of Hy,, C,, and approach angle, a) were deter-
mined at each breaking wave-ray location, and then interpolated at beach
stations every 250 meters along the study area. The shoreline (plan)
angle at each of these 250-meter locations was measured from aerial
photos and the value of a then determined. The longshore component of
wave energy flux at breaking was calculated using equation (9) at each
250-meter beach station, and was then multiplied by that wave type's
percent occurrence. A positive value of Py represented a component
of wave energy flux in a southerly direction and a negative value
represented a component in the northerly direction.

As each wave type was refracted toward shore, and the longshore
component of wave energy flux wes calculated, the percent contribution
to either the northerly or southerly components of the annual longshore
flux was summed, by direction, with the contribution from the other wave
types. The resulting totals at each 250-meter beach station represent
the northerly and southerly longshore components of the annual wave
energy flux.

The spatial variation of these totals was significant, and the
sudden changes in magnitude were not representative of the actual energy
flux conditions. Several factors which contributed to this problem
were:

(a) The refraction model used a static representation of shoreline
conditions and bathymetry. As soon as a concentration of wave
energy in shallow water occurs in the prototype, erosion
results and bathymetry changes to reduce the energy concen-
tration; i.e., nature tends to smooth out sudden changes in
concentrations of wave energy, but the model cannot.

(b) The resolution of the computational grid cells close to the
beach were not fine enough to allow for the rapid changes in
bathymetry and beach planform.

(c) The energy flux values are proportional to the product of the
sine and cosine values of the wave approach angle relative to
the beach shoreline. Consequently, subtle errors in of fshore
angles can result in gignificant errors in the energy flux
computation at the beach face.

(d) Diffraction effects and the influence of tidal currents were
not included,
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To overcome these problems, i,e., to remove the rapid fluctuations
without significantly altering the longer term tremds, a nine-point
running filter was applied to the results of the energy flux computa-
tions. The running filter averages the values from nine points (in this
case, nine 250-meter points are equivalent to averaging over a
2-kilometer stretch of beach) and assigns that average to the middle
point. The filter is then moved to the next (middle) point and averages
its value with the four values on either side, etc,

Figure 37 shows the filtered results of the northerly and southerly
components of the annual longshore energy flux; Figure 38 combines both
components and shows the net annual longshore energy flux acting along
the study area.

4, Longshore Sediment Transport Model.

The accepted practice for computing the longshore sediment transport
rate has been to use an empirical relationship between the laongshore.
component of the energy flux entering the surf zone and the volume of
sand moved, This dimensional relationship is given in the Shore Pro-
tection Manual (SPM) (U.S. Army, Corps of Zngineers, Coastal Engineering
Research Center, 1977) and can be expressed as

3 3
M _ M -s N-M
Q y—r = 1,288 Boyr P]‘S ] (10a)
or
d yd3 fr-1b
RASIEE Qg DALNEN) a4
qQ r 7,500 Ty Pl - (10b)

where P; is the energy flux factor and Q is the longshore sediment
transporf rate. This equation was developed from field observations in
which wave height characteristics were represented by only one value--
the significant wave height,

In this study, actual longshore energy flux components were cal-
culated for a set of wave types which were subsequently summed together
according to their percent occurrence, Consequently, this calculation
of the longshore energy flux is not compatible with equation (10) above;
hence, the dimensional constants given in the SPM cannot be directly
applied or compared. Jarrvett (1977) performed a refraction analysis
similar to that performed in this study and found a value for the
constant by correlating measured volumetric changes along Wrightsville
Beach to computed energy flux values at each end of the beach.

Jarrett's successful results showed that the same type of relationship
which is given in the SPM exists between the computed values of the
Iongshore energy flux and the sediment transport rates. Therefore, that
relationship is used in this study and 1s expressed by

3 3t n
LF
Q[ =8 5| & Cree o (1
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where n is the number of wave types used to represent the seasonal or
annual wave climate, P), is the longshore component of wave

energy flux (at breakiné), p; 18 the percent occurrence of that wave
type, Q is the long-term longshore sediment transport rate, and 3 is
the dimensional constant (found from correlation) relating Q to Plb.
The dimensions of each term are shown in brackets.

A sediment budget approach can be used for the correlation of @ and
P]. For a beach cell, as shown below, Qj, represents all long-temm
sources of sediment supplied into the cell-per-unit time and Qg,¢
all long-term losses from the cell-per-unit time, The difference,
Qout—Qins» represents the long-term change in beach volume for
‘that cell.

The longshore components of wave energy flux, as calculated in
Section V,3, are P1, and Py, and their respective beach coordinates are
X1 and Xg,

X X3
Qin__>lbea‘:h Cell,"".é Qout
D
P1, P1,
From equation (11), Q,,+—Qi, = B [Pll—Pl ]. Let q/1, be the long
-term erosion or accretlon rate per unit %ength of beach, then
qL - QOut-Qin
xz—xl
and hence,
qL ) P12_Pll_
X2y
or
P
q. - A"l
L= B X
In the limit, asAX — 0
q dp,
L= B ax (12)

At any point along the beach, (3 can be determined from the ratio of the

long-term erosion-accretion rate to the spatial gradient of the
longshore component of wave energy flux.
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Values of measured qp were taken from all profiles along the
beaches away from the immediate area of inlet influence., Unfortunately,
due to the insufficient temporal and spatial distribution of profile
data, wolumetric change data for Masonboro, Kure, and Fort Fisher
Beachas were not calculated. Only values for Wrightsville and Carolina

Beaches, 1n Tables 7 and 10, were compared to predicted values. A plot
of g and It (dP;/dX), versus beach distance X, was drawn by

choosing a value of 8 which produced the best correlation between the
two lines To eliminate sudden computational fluctuations before

comparison with wmeasured qp values, the ﬁIdPl/dX values were
filtered to produce smoothly varying distribution.

Figures 39 and 40 show the results of these comparisons for
Wrightsville Beach and Carolina Beach, respectively., Although consid-
erable scatter in the values of qp is obvious, especially along the
northern Carolina Beach reglon, the general trends of both the computed
and measured volumetric change values are similar along each beach.

Within the limitations of the analvsis, it appears that a value of
B =300 m3-s/K-yr provides the best fit for Wrightsville Beach with a
data scatter of +33 percent. For Carolina Beach, the best-fit value is
3=900 m3-s/N-yr with a data scatter of +66 percent. These results
as summarized in Table 16, show a large possible range in values of J.
Assuming that equation (11) 1is a valid representation of the relation-~
ship between the longshore sediment transport rate and the longshore
compouent of wave energy flux, then two possible conclusions can be
made, First, the value of [ is highly localized and strongly dependent
on the local physical characteristics of the beach and sediment
properties, Table 3 shows that the sediment characteristics do change
along these beaches, and differences in offshore beach slopes between
Wrightsville Beach and Carolina Beach were discussed in Section II. The
second pogsible conclusion, and probably the more dominant one for this
study, is that the value of 8 is very sensitive to the method of com-
putation of the variables in ‘the rates qp/(dP;/dX). In particular,
errors inherent within the refraction analysis technigue can result in
significant spatial variation of the enerpgy flux and hence in the
dP;/dX values. This variation is then reflected in the spatial
variation of the 3 values.

Teble 16, Values of {3 for Wrightsville and Carolina Beaches.

Beach Values of B in units of m3—s/N—yr
Best fit Lower bound Upper bound
Wrightsvilile 300 200 400
Carolina 900 300 1,500
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Comparison of the results of this study with those of Jarrett's
(1977) are encouraging. Although Jarret calculated his 8 value based
only on the midsection of Wrightsville Beach, his value of
B= 418 m3—s/N—yr is approximately equal to the upper limit of the
value of 8 for Wrightsville Beach as predicted by this study.

5, Sediment Budget.

To illustrate the application of the sediment transport model in
estimating the northerly and southerly longshore transport rates and the
quantity of material lost into the adjacent inlets, sediment budgets
using littoral cells of finite length along Wrightsgville and Carolina
Beaches were performed. Each beach was divided into the three cells
which, as described in Section IV, 4, best represent the long-term
volumetric changes along those beaches. Losses from the active profile
due to a rise in sea level, losses from the beach due to inlet trapping,
and losses or gains in each cell due to longshore sediment transport
were all considered. The long-term excursion rates which were used to
determine the annual volumetric beach change for each cell were
calculated by eliminating identified excursions, both within the project
boundaries and along downdrift beaches, due to the placement and
subsequent initial erosion of beach fills. Consequently, the
contributions to, and the commensurate of fshore losses from, the overall
sediment budget due to beach-fill operations were addressed and do not
need to be further incorporated into the sediment budget equations.
Aeolian losses were considered inconsequential (U.S. Army Engineer
District, Wilmington, 1977) and also were not included. An inherent
assumption within this approach to developing a sediment budget is that
offshore losses due to ongoing sorting of freshly exposed beach face is
minimal. This assumption is addressed later in Section VI and was found
to be valid.

Baged on the concept of maintenance of an equilibrium profile under
rising sea conditions (Bruun, 1962), the annual volumetric loss of
sediment due to a sea level rise 1s shown in Tables 6 and 17. Losses
due to wave overtopping occurred only along the northern section of
Carolina Beach. Aerial photos taken in May 1964 and November 1974 were
used to estimate the bayward excursion of the bayside shoreline,
Regults from that analysis indicated that approximately 4,600 m3/yr
was lost from the oceanside of Carolina Beach (U.S. Army Engineer
District, Wilmington, 1977).

Table 17. Annual volumetric changes in beach—cell volume and losses
due to sea level rise and wave overtopping.

Change in beach-{ Loss due to Loss due to

Beach cell volume sea level rise | wave overtopping

cell (m3/yr) (m3/yr) (m3/yr)
Wrightsville (north) -24,430 2,289 -
Wrightsville (central) -77,530 1,873 -—
Wrightsville (south) -12,370 1,457 --
Carolina (north) +104,500 700 4,600
Carolina (central) -269,750 1,582 --
Carolina (south) -107,970 2,285 --
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The sediment budget equations for a typical beach cell (see Fig. 41)
are:

Sediment sources: Qu-1 5 + Qu41 .n
» H

Sediment losses: Qu,n-1 * Qn,n+l + SLy + OTg
¥

Annual volumetric beach change:

Vo = Qn—l,n + Qn+l,n - Qn,n—l = Qq,n+l — Skp - 0Ty (13)

where n, n-1, and n+l are individual beach cells, SL, is the annual
sediment loss from cell n due to the rise in sea level, 0T, is the

annual sediment loss from cell n due to wave overtopping, and Qn a+l
is the annual longshore sediment transport from cell n into cell ‘n+l.

Equation (11) is used to predict the quantity Q between littoral
cells located on a continuous beach; however, a problem with this
formulation arises when a cell boundary borders an inlet, weir jetty,
headland, etc. In these situations, the actual quantity of sediment
moving in the littoral drift may be less than that predicted by
equation (1l1) and so a modification must be incorporated into the
sediment budget equations. The actual longshore sediment transport
rate, Q is related to the potential longshore sediment transport rate
by the ﬁefflclency factor," a, such that

(BP]_) (14)

Along straight and continuous beaches, the value of @ must be unity;
however, at inlets and other sediment traps, its value is less than or
equal to one. In extreme cases of total gediment removal, the value of a
is zero. The solution of all sediment budget equations for a set of
littoral cells defines the values of a at each cell boundary.

The sediment budget schematizations for Wrightsville and Carolina
Beaches are shown in Figure 42. The values of the northerly and
southerly components of the longshore energy flux at each littoral cell
boundary are shown in Table 18. The values of 8 used in the longshore
sediment transport equations were -8 =300 for Wrightsville Beach and
B =900 for Carolina Beach, The measured volumetric change within each
cell, the annual volumetric loss due to sea level rise, and the loss due
to wave overtopping are shown in Table 17.

The sets of @ values at each inlet boundary (i.e. » @1 7 and
az 1;a4,5 and @5 4; and @7 g and ag,7) cannot be un1que1y
determinéd (there are more unknowns than equatlons) and therefore, the
values of one efficiency factor of each pair must be assumed. For an
unimproved inlet {(i.e., no jetties, weilrs, etc.), it was assumed that
all sediment contained within the littoral drift system entered the
inlet cell, 1In this case, the northerly longshore transport from the
northern ends of Wrightsville and Carolina Beaches was assumed to enter
Mason and Carolina Beach Inlets, respectively. Consequently, az, 1

and ag 7 were set equal to one and the sediment budget equations
solved resulting in the values of @],2=0.09 and a7 g=0.31.
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Table 18.

Energy flux values at cell baundaries.

Beach cell Cell Cell Cross northerly flux || Gross southerly flux

No. | bamdaries || Notation | Fegnitude || Motation | Megnibude

{lam) (N-m/5/m) (N-m/s/m)
Northern boundary 1 0.0 — — P1,2 421.5

(Mason Inlet)

wrighteville (north) | 2 0.0-2.5 Py 1 115.8 P23 7.6
wrightsville (central) | 3 2.54.8 Py, | 0.0 Py 424.3
Wrightsville (sauth) | 4 4.8-6.7 By | 1153 Py 5 446.3
Masonboro Inlet 5 6,7-7.2 P 4 352.8 — —
Carclina Beach Inlet 7 19.7-20.5 - — P?,S 310.2
Carolina (north) 8 | 05215 || pgq | 2.7 Pg g 165.6
Carolina (central) g | 21523 myg | 4186 Py 1o | 350.0
Carolina {scuth) 10 %.3-27.3 |} Pyo 9 305.0 P 10,11 386.5
Kure ard Fort Fisher 11 27.342.0 P11 1n 224.2 — -

These values indicate that approximately 90 percent of the potential
gsoutherly longshore sediment transport remained trapped in Mason Inlet
and 70 percent remained in Carolina Beach Inlet.

The north jetty at Masonboro Inlet was completed in spring 1966 and
consists of a rubble~mound outer section and a low concrete sheet-pile
inner or weir section. The design of this weir jetty and the dredging
of material from the deposition basin on the inlet side of the weir have
caused a reduction in the northward sediment bypassing to near zero
(U.S8. Army Engineer District, Wilmington, 1977), Therefore, a5 4
was set equal to zero and the solution of the sediment budget equations
gave a4’5=0.64. This means that approximately two-thirds of the
potential littoral drift passes over or around the weir jetty into
Masonboro Inlet and one-third remains trapped on the southern end of
Wrightsville Beach, providing a source of material for northerly
transport. Table 19 gives the a values for the Wrightsville Beach and
Carolina Beach sediment budgets.

Efficiency factors a for Wrightsville and Carolina Beach
sedmnent budgets.

Table 19.

Beach cell Cell || Northerly transportTI_SmLherly transport

Ho. || Notation Factor i| Notation Factor

Mason Inlet 1 = == 1,2 0.09
wrightsville (rorth) 2 2,1 1.0 2,3 1.0
Wrightsville (central) || 3 3,2 1.0 3,4 1.0
wrightaville (south) || & 43 1.0 45 0.64
Masonboro Inlet 5 5,4 0.0 — —
Carolina Beach Inlet 7 — — 7,8 0.31
Carolina (north) 8 8,7 1.0 | 8,9 1.0
Carolina (central) 9 9,8 1.0 9,10 1.0
Carolina (south) 10 10,9 1.0 10,11 1.0
Kure and Fort Fisher 11 11,19 1.0 | — -—
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dnalyses were performed to include Masonbaro, Kure, and Fort Fisher

Beaches inle cne continuous sediment budget analysis; however, the lack
af reliable long-term volumetric change data along those beaches meant
that large and somewhat arbitrary changes in either the volumetric

excurgion rdates, energy flux values, or 3 values were needed to balance
all sediment budget equatioms. Because of these changes, the results
were nob meaningful and are not presented,

¥I. BEACH-FILL PERFORMANCE

All beach Ffills placed along the study area between 1965 and 1975
were discussed in Section II; Tahle 4 and Figure B of Section IV show
addirional detailed information on their location and time of placement.
The beach Fills are also discussed in Valliances (1970), U.8. Army
Engineer District, Wilmingteon (197D, 1974, 1977), and Jarrett (1977).
Information presented in this section is based on the guantitative
interpretation of the excursion distance analyses of the 1970 beach fill
on Wrightsville Beach and of the 1965 and 197] beach fills on Carcolina
Heach. There waz insufficient repetitive profile information for the
other £ills tp allow excursion analysis and subsequent fill performance
evaluation.

The 1970 beach f111 along the central part of Wrightsville Beach was
the best documented (in terms of repetitive beach surveys before and
after placement of fill material) beach-£fill project, and the excursion
distance plots of profiles WB13 to WB29 (App. A) show the response of
the beach te this fill. Sequeatial profiles showing the post—fill
behavier at profile WB-15 are presented in Appendix F. All relevant
data from all of these plots are summarized in Figure 43 which shows the
spatisl variation along the beach of the initial fill excursion, the
percent tobal initial losses, the net sxcursion after initial losses,
the long-term erosion rate, and the value of the exponential decay
constant, k., All walues in the figure are averaged from the MLW, MSL,
and MHW excursion distance plot of each profile located along the
central section of Wrightaville Beach.

The average initlal Fill excursion, as defined by the firet measure-
ments taken after fill placement, was 76.6 meters, and the distribution
of the fill along the beach was almast triangular. The maximum initial
excursion was approximately 125 meters in the middle and the excursion
ar the project boundaries was approximately 50 meters. Figure 43 shows
that beach excursions were measurable along the beaches on either side
of the praject houndaries soon after the initial £ill placement. These
pdge excursions indicate that some of the material placed within the
project liwmits of the Fill] gquickly spread laterally to the adjascent
beaches, The pverage €il1 excursion remaining on the beach face, afrer
all initial losses had occurred (approximately 2 years), was 15.5 meters
with 8 maximum retention of 29 meters in the middle of the fill., This
means fhat 80 percent of the initial fill was lost dus to sorting, slope
readjustment , and Lateral spreading. The southern end of the fill
experienced the highest initial loss of 90 percent where only 5 meters
of exoursion remained after approximately 1.5 years.
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During the calculation of volumetric change between two subsequent
profiles, based upon the application of the volumetric equivalent factor
to the MLW-MHW contour excursions of those profiles, an assumption of
self similarity in profile shape was employed. In other words,
volumetric changes were assumed Lo occur only as a result of horizontal
displacement of the profile and not to the redistribution of material
from the upper beach face offshore, a phenomenon which occurs during the
slope readjustment phase of the beach-fill response. Consequently, the
total initial volumetric loss for the fill may be sliphtly less than the
80 percent value; however, the average initial loss in beach face
position is still 80 percent of the fill excursion.

The adjustment during the design phase of the project for the
expected sorting losses was accomplished by applying a factor known as
the critical ratio (or beach-fill factor) to the reguired volume of
beach Fill, The critical ratio 1s simply an estimate of the quantity of
borrow material required to yield 1 cubic meter of beach material having
granulometric characteristics srmilar to the native beach. The value
calculated for the Banks Chanunel borrow site, and which was applied to
the Shell Island borrow material, was 2.5 (U.S5. Army Engineer District,
Wilmington 1977)., This means that 2.5 cubic meters of fill material was
required to produce 1 cubic meter of fill material on the beach after
sorting; i.e., a 60-percent sorting loss was expected.

A modification to the original fill-factor formulation was developed
by Jamzs (1965) and has now been incorporated into modern beach-fill
design practices (U.S. Army, Corps of Engineers, Coastal Engineering
Research Center, 1977). Cranulometric data from profiles taken in July
1969 just before the fill and samples taken from profiles along the fill
just after placement are shown in Table 20. These values were used to
calculate the adjusted fill factor, Ry, from Figure 5.3 of the SPM.

The value of the adjusted fill factor was Ry=3.0, which implies that

66 perceat of the initial fill was lost to sorting. The new adjusted
fill factor predicted larger sorting losses than did the older formu-
lation; however, both methods predicted losses that were lower than that
measured. Assuming that these formulations are correct, then losses in
addition to sorting (slope readjustment, lateral spreading, etc.), are
significant and must be included in the beach-fill design.

Table 20. Granulometric data for Wrightsville Beach 1970 beach fill.

= ' Composite Composite
Granulometric Date Profile mean gratin standard
conditions size W deviation é
(in phi units) | (in phi units)
Before fill July 1969 WB16 1.53 0.41
WB29 1.52 .83
Prefill composite values | L 1.52 0.87
R 5 I
After fill Aug. 1970 WB13 2.23 0.49
WB19 1.64 0.76
. WB25 1.78 0.83
Prefill composite values | 1.88 0.69 ]
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The values in Table 20 were also used to calculate James' (1974)
renourishment factor, Ry=1.9. This factor expresses the ratio of
the retreat rate of the beach after fill placement to the retreat rate
before beach—fill operations. However, in its derivation, James (1974)
assumed that the postfill retreat rate was linear and not exponential,
Therefore, its value cannot be compared to the rasults of this study.

The relative changes in the upper beach—face angle (from MHW to MLW)
after fill placement were measured for profile W3Ll7, Figure 44 shows
that immediately after placement the average beach face angle was 1 on
57, which was flatter than the prefill angle of 1 on 35. The beach
angle changed fairly rapidly during the first 6 months after placement,
and after 9 to 12 wonths, the difference in the average beach angle at
that time and the long-term beach face angle was less than the expected
difference due to seasonal fluctuations. It is apparent that a signifi-
cant proportion of the upper beach slope adjustments and sorting losses
occurred during the first 9 to 12 months, After that period, the upper
beach face retreated with a fairly constant slope.

The value of the exponential decay constant, determined from the
average of the individual k values for each of the MLW, MS5L, and MHW
excurgion plots from each profile, was k=0.66. Substituting this value
into equation (4), together with¢f=0.8 and $,.=0.95(f;, gave t;=1.8 years;
i.e., effectively all initial losses due to sorting, slope adjustment,
and lateral spreading occurred during the first 1.8 years after fill
completion, Substituting k=0.66, {=0.8, and E,=0 into equation (6)
produces t=4,06 years, This means that the beach face eroded back to
its original prefill position 4.06 years after fill completion, and that
the beach-fill project effectively "bought" this time for the beach
segment within the project boundaries by artificially placing sand on
the beach, This is in agreement with observed behavior. Between
October 1970 and December 1974, an estimated 91 percent of the initial
beach fill was lost (U.S. Army Engineer District, Wilmington, 1977), and
the sequential beach profiles in Appendix F show that by April 1974 the
location of profile WBI5 was approximately in its pre—-1970 beach-fill
position. Only a few percent of the initial fill was retained above the
MHW contour after 4 years and, unfortunately, little information 1is
available to describe the changes in offshore bathymetry. Downdrift
beaches benefited from the fill due to alongshore transport away from
the fill site, However, quantification of this benefit was not possible
due to the masking effect of the seasonal variations in beach position,

Assuming that only slope and sorting adjustments occurred during the
first 9 to 12 months, then solving equation (4) for S at t1=0.75
and t9=1.0 indicates that 54 to 62 percent of the total initial fill
volume was lost to sorting and slope adjustment. This range compares
favorably with the values of 60 to 66 percent sorting loss estimated by
the adjusted fill factor and critical ratio techniques, respectively.

The rate of initial loss of beach material was nobt constant along
the length of the beach-fill project. The k values calculated for
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profiles near the ends of the fill tended to be slightly higher than
those for profiles located in the middle. This implies that fhe ends of
the fill eroded at a slightly faster rate than did the center, which czan
be expected since the rvelative changes in beach angle and nesrshore
bathymetry at the ends are greater than the relative changes in the
center, and thus cause greater concentration of wave energy ard sediment
transport. Together with the fact that 20— to 30-meter excursions
occurred on either side of the fill soon after placement, this inFforma-

tion supparts the concept that significant quantities of fill material
spread laterally from the fill ends. It should be noted, however, that
nonhomogeneity in the fill material properties may have been the resl

cause of the variastion in the rate of initial loss along the project
length. Approximately 70 percent of the fill marterial was obtained from
a shoal in the Banks Chaonel, and the balance which was extremely fine
sand of poor beach—fill quality was obtained from the sound area behind
Shell Island (U.S. Army Engineer District, Wilmington, 1877).

The most significant fearuge of the variation in long-term excursion
rate along central Wrightsville Beach is that the rate calcularted for
the 1965 to 1975 decade (i.e., 5 years before and 5 years after Fill
placement) was significantly higher in the vicinity of the fill rhan
along adjacent beach sections., This means that the reasan for the high
erosion rates, which existed before and probably resulted in the need of
the 1970 fill, still existed after 1970 and caused high annual sediment
losses to the £ill.

There are two possible causes for these localized higher ercsion
rates. In 1965, the north jetty of Masonboro Inlet was completed and
effectively cut all northward sand transfer from Mascnbero Island to
Wrightsville Heach. Consequently, Wrightsville Beach suffered higher
erosional loases since 1965 due to the partial lack of sediment supply.
South of the Fill the growth of the accretion fillet may have offset the
increased erosional treads; however, the same is not true far the ares
adjacent to the north fill boundary.

An oblique aerial photo of Wrightaville Beach taken between |968 and
1969 (Fig. 45), shows a significant deviation in the present—day shore-
line alinement near the ceater of the izland. The uniform—width dark
band between the beach and the seawardmost houses is rthe grassed part of

the constructed dune of the 1965 beach-fill project. The misalinement
of the north end of the Wrightsville Beach fill, relative to the present
tendency of the shoreline, resulted from Moore Inlet which, prior to its
artificial closure in 1965 as part of the overall beach nourishment
plan, was located just north of arrow A, The closure of Moore Inlet
eliminated the interaction between tidal and littoral forces in this

area, which had existed since 1887 and which had combined to form a
seaward concavity in the shoreline alinement immediately south of the
"inlet. FErosion prior to the 1965 beach fill exposed the northern
building line of the township of Wrightswille Beach and 8o the aline-
ment of ‘the 1965 beach [ill was forced to follow this line, thus causing
a bulge in the resulting beach planform. Arrow B points to profile
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WB36, the approximate start of the alinement problem. Between 1965 and
1970, the beach on the north side of the Masonboro Inlet jetty accreted,
however, the central island bulge and alinement problem remained. The
1970 beach fill was placed approximately between arrows A and A', thus
reinforcing the beach alinement problems, The greater relative change
in beach planform and nearshore bathymetry in the central section of the
island from 1965 to 1975 resulted in higher wave activity and erosional
trends.

Natural beach processes tend to focus on and smooth out irregular-
ities, thus creating a smoothly curving beach as is idealized by the
dashline in Figure 45. The high rates of erosion and initial losses
assoclated with the 1970 beach fill may not be typical of all beach
fills, but may have been partly caused by the exposure to increased wave
attack due to the misalinement of the beach planform. The resulting
implication means that if improvement in performance of a future
beach fill located in the same area 1s desired, then additional fill
should be placed along the adjacent beaches, as shown by the dot-dash
line in Figure 45, to remove the alinement problem. This, however, may
not be an economically feasible solution.

Information obtgined from the postfill beach response was used to
examine the assumption in the sediment budget analysis that offshore
losses due to sorting of freshly exposed beach material were minor.
Equation (6) showed that 4.06 years after the fill placement, the beach
returned to its prefill position and with approximately the same near-
shore profile (Fig. 44). This means that whatever came into the fill
area during the 4.06~year period was transported out by the end of that
time,

The sources of sediment include longshore transport into the fill
region, material placed during the beach-fill operations, and material
brought ashore by seascnal onshore transport. Losses of sediment
include longshore transport out of the fill region, losses due to
sorting of the beach fill, seasonal losses due to offshore transport,
losses due to the rising sea level, overwash, and aeolian processes.
Since the pre- and end-of-period profiles had approximately the same
shape, the net volumetric changes due to slope readjustment were zero.
Over an even 4-year period, seasonal changes should approximately
balance out, and so within the limits of accuracy of this study, the net
on/offshore contribution was set to zero. Volumetric gains from the
beach fill (BF) were determined from surveys, and associated sorting
losses (sorting) were calculated using the adjusted fill factor
(Ry). Losses due to sea level (SL) were calculated by use of
Bruun's (1962) formulation. Aeolian and washover losses were near zero.
Since the net volume change at the end of the 4.06-year period was zero,
then the net volumetric change due to alongshore transport of the
boundaries (Qj,~Qout) must equal the difference between these
_identified sources and sinks since the fill area was away from active
inlets, jetties, etc.; i.e.,

Qin - Qout *+ BF - sorting - SL = 0
or
Qin = Qut + BF/Ry =~ SL =0
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Substituting in wvalues from Tables 4 and 6 and with Kp=3, the annuzl
volumetric change due to alongshore transport was

Tin = Qaue = —B6,125 m3/yr

From equation (11)

(i)

and from Figure 36

and hence

Within the limits of accuracy of both the data and technical analyses,
this simple postfill sediment budget determination, where all
contributions to the sediment budget were guantified, praduced a wvalue
of B which was very close to that caleulated earlier (mean value of

8 = 300) when using long-term beach response characteristice and where
the losses due to sorting of "freshly" exposed native beach material by
ongoing ercsion was assumed to be small, BHince the caleulated values of
B are similar and they come from analyses of two distinet phases of
beach response, these results support the contention that ongoing
gorting losses during the long-term response phase are minimal.,

Analysis of the gpatial variation of the beach response to the 1965
and 1971 beach fills along Carclina Beach was not possible because of
insufficient profile information. Results for the 1965 fill, as shown
by the beach photos in Figure 46, were detemmined from MLW, MBL, and MHW
excursion distance piots for profiles CBl06 and CBI07 which were less
than 0.5 kilemeter spart. Consecutive profiles at CBY97 were used to
determine the response to the 1971 beach fill. The average exponential
decay constant, the average initial fi1ll excursion, and the average
long-term erosiconal rate are given in Table 12, Substituting these val-
ueg into equation (4) indicates that most initial losses accurred during
the first 1.5 to 2 years following both fills, in agreement with
observed behavior (U.S. Army Engineer District, Wilmington, 1970).

Using the values contained in Table 12 and assuming { =0.8, equation (6)
predicts that 2.4 years and 2,25 vedars after the 1965 and 1971 fill
projects, respeéctively, the beach Eace eroded to approximately its
original prefill position, These values are in reaspnable agreament
with recorded observations on the loss of beach fill during the 2 years
following each fill (U.S. Army Engineer District, Wilmington, 1977).

Granulometric data taken immediately after fill placement in 1965,
and taken again 2 years later, are shown in Table 21, ‘These data were
used to calgulate a critical ratio of 2.1 for the fill material, and
thus an expected 55 percent volumetrie loss due to sorting (U.5. Army
Engineer District, Wilmington, 1970). Results from profile CBI0& tend
to show that 50 percent of the initial excursion was last during the
first 1.5 to 2 years, close to the design value. The adjusted fill
factor and James' (1975) renourishment factor were evaluated from the
same data and were found to be Ry=1.02 and R;=0.25, respectively. For
the 1965 Carolina beach-~fill data, the adjusted fill-factor techniques
predicted a value of expected sorting less significantly lower than both
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After restoration {1965)
Figure 46. Vlews of Carolina Beach shoreline before and afisr construction
of 1865 beach-flli project.

Table 21. Average granulometric data for Carplina
Beach 1965 beach fill.

Granulemerric Composite Compoalle
conditians (date) mean grain standard
size fjt deyiation C
(in phi units)| (in phi units)
Spring 1965 (time of fill) 0.96 1.23
{May 1967 (2 yeaars after fill) 1.569 0.91 i

the value calculated by the critical ratio technique and the actual
measured loss from one profile, Granulometric data were not available
for the 1970 Carolina heach fill,

With only data from two beach fills, a relationship between rhe

exponential decay constant k and granulometric propartiess of the beach
fills was not inveatigated.
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VII. SUMARY AND CONCLUSIONS

During the period from 1964 to 1975, 2,952 repetitive beach profiles
were recorded at 241 stations between Wrightsville Beach and Fort
Fisher Beach. The total length of Wrightsville and Carolina Beaches
represented only 32 percent of the total length of the study area, but
nearly 70 percent of all beach profile stations and 89 percent of the
total number of recorded profiles were located along these two beaches.
Of the nearly 3,000 profiles, only 4 percent extended beyond the MLW
position to approximatley the ~10 meter contour. As a consequence,
volumetric changes representative of actual changes occurring between
successive surveys could not be calculated by simply measuring the
change in area under the measured profile curves because significant
changes occur below the low water line,.

The positions of the MHW, MSL, MLW, -1.83 meters (-6 feet),
-3.66 meters (~12 feet), and ~5.49 meters (-18 feet) contours were
plotted relative to a fixed base line, for all profiles. The excursion
distance of each contour between successive profiles is indicative of
volumetric change, the magnitude of which is found by applying a
volumetric equivalent factor, calculated from changes in area under some
profiles which repetitively extended out into deeper water, to the mean
excursion distance value. Due to the poor spatial and temporal
distribution of profiles along Masonboro, Kure, and Fort Fisher Beaches,
only profiles from Wrightsville and Carolina Beaches were used in the
analysis of beach response and volumetric changes associated with storms
and manmade influences. The results indicate that the average seasonal
changes along Wrightsville and Carolina Beaches, measured 24 and
17 meters, respectively, were significantly larger than the long-term
loss (erosion) rate for 1 year. In addition, the response of these
beaches to storm—induced erosion or beach-fill placement was, in many
instances, very short in duration and therefore difficult to identify in
many of the excursion plots which had poor temporal resolution,

Most of the beach profile data are not a result of one coordinated
and well-planned study, but rather from several independent and over—
lapping studies. The following recommendations on the distribution of
beach profile surveys are based on comparison of adjacent profiles and
are made so that the most efficient use of manpower and money can be
incorporated into future beach studies.

The spatial separation of profiles should be in the range of 0.5 to
1.0 kilometers, if possible, along straight or smocthly varying
stretches of beach. Profiles should be spaced closer in areas of abrupt
changes in beach planform (e.g., inlets, headlands, etc.) or in areas
where historic observations indicate large relative changes in beach
position.

The profiles must be measured with sufficient frequency so that
seasonal fluctuations and longer term trends can be identified and
separated. To accomplish this, some stations (e.g., every fourth) must
be surveyed frequently, no more than 1 or 2 months apart, and the inter—
mediate stations should be profiled at least twice a year (surveyed at
the same times each year).
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Some of the profiles which are surveyed frequently must be surveyed
out beyond the MLW position to approximately the position of the
~10 meter contour. These long profiles are necessary to establish the
actual volumetric changes for the entire active profile, and hence, used
to calculate the volumetric equivalent factor applied to the intermediate
profiles,

If the seasonal variation in beach excursion is larger tiran the
long-term trends, then profile data must be collected for a minimum of 2
to 3 years for both processes to be quantified. Greater variability in
the data necessitates longer collection periods.

For projects with tight budget constraints, a few profiles located
in key positions and surveyed frequently will provide a better data base
than more profiles surveyed infrequently.

Wave gage data collected at Johnnie Mercer's Pier and LEQ data from
Wrightsville Beach were combined to develop a wave climate representa-
tive of the wave conditions found along the study area. This data was
refracted in to shore and the breaking wave conditions were used to
calculate both the northerly and southerly components of longshore
energy flux. The spatial gradient of these values along Wrightsville
and Carolina Beaches were compared with the long-term (nonseasonal)
volumetric changes, and the empirical factor, [, which relates the
longshore sediment transport rate to the longshore component of energy
flux was calculated. By choosing a best~fit value of 8 =300 and
g =900 m3—s/N—yr for Wrightsville and Carolina Beaches, respectively,
plots of predicted and measured volumetric change due to longshore
sediment transport along each beach showed similar trends, although the
absolute magnitude at any beach location was different.

To improve the accuracy of the energy flux computation in future
studies, the following recommendations on desirable refraction model
characteristics should be utilized or developed.

(a) Variable grid cell spacing should be used to allow coarse-sized
computational cells in deep water and finer cells in the
nearshore region where greater relative changes in bathymetry
can cause instability problems.

(b) The effects of diffraction and tidal currents on wave
propagation should be included.

(¢) The dynamic interrelationship between both the nearshore
bathymetry and shoreline planform, and the sediment transport
potential of the incoming waves should be incorporated. The
present static boundary condition representation of the shore-
line, used in refraction analysis programs, does not allow for
any change in shape in the shoreline due to increased sediment
transport capabilities as a result of increased (focused) wave
activity. Thus changes in refraction patterns and beach
approach angles due to beach response between different sets of
wave types used to represent seasonal or annual conditions
should be included.
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Until these improvements can be incorporated, the results of this
study indicate that the additional expenses incurred due to the use of a
large number of wave rays and high resolution in the bathymetric data
cannot be justified.

Sediment budgets were developed for Wrightsville and Carolina
Beaches. These two beaches were éach divided into three littoral cells
in which the response of the beach to all natursl and man-influenced
changes was fairly similar. Long-term volumetric changes were assumed
to be rhe result of diiferences in longshore sediment transport rates,
sediment loss to wave overtopping, and to sea level rise. Losses due to
ongoing sorting of beach sediment were considered minor. Values of wave
energy flux at esach cell boundary were multiplied by the empirical
factor [3 which relates the longshore tramsport potential to the long-
shore component of wave ensrgy flux., An additienal efficiency facter, @
which relates the actual wolune of sediment transported Lo the potential
amount as predicted from the energy flux analysis, was included in the
sediment budget equations. The value of @ aloug a smooth and uninter-
rupted coastline was assumed to be one and at positions where a coastal
structure (e.g., the north jetty weir at Masonboro Inlet) or where
geolopic control (availability of sediment supply) prohibit transport,
the value of o was assumed to be zero. The solution of the sediment
transport equations resulted in @ values which indicated that only
two—thirds of the gross southerly transport along Wrightsville Beach
spills over the north jetty weir into Masonboro Inlet and one—-third is
either trapped along the southern end of Wrightsville Beach or locally
tranasported northward by wave energy reversals. At the northern ends of
Wrightsville and Carolina Beaches, only 10 and 31 percent of the
potential volume of sediment is transported out of Mason and Carolina
Beach Inlets, respectively. I1f better volumetric change data had been
available for Masonboro Beach, then the influence of HMasonboro and
Carclina Beach Inlets in terms of their inlet trapping potential on the
supply and storage of sand have been determined.

Analyses of the beach profiles taken along Wrightsville Beach after
the 1970 beach £ill indicate several components of heach respense., The
firet component was a long-term loss rate of -3.8 meters per year which
was approximately equal to the long~term lossg rate duriog the 5-year
period prior to the 1970 fill operations., This rate was much higher in
the immediate wvicinity of the £ill than along adjacent beaches both
during the prefill and postfill pericds, and indicated that the fill
placement did not reduce or eliminate the problem which resulted in the
need for a FL1IL, but rather provided recreational opportunity and "bought-
time™ for the properties behind the project boundaries.

In addition to the leng-term component, an exponential loss of
beach-fill volune was recorded during the first 1.5 to 2 years. Excur-
sion plot analysis showed that about 80 percent of the trntal 1nitial
£1i1]l was eroded during this period of rapid initial loss, and that
severe sborm erosion was not the primary cause for the very high initial
loss rate.

The first set of profile measurements taken after fill completion
indicated that the fill material was placed at a beach angle shallower
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than the existing 1970 prefill beach slope. During the firast 9 to

12 months the MHW-MLW beach slope steepened (and retreated} in response
to the seaward sorting of fine sand grains and to the readjustment of
the profile slope to the prevailing wave conditions. After rhis period,
the upper heach face retreated with only wminor changes in beach slope
due to seascrsl wave climate influences,

Sediment characteristics of the fill and native beach mat-rial were
used to calculate a value Eor the adjusted fill factor of #y=3.0.
This value indicates that 66 percent of the (ill wmaterial cam be
expected to be lost due to sorting; however, comparison with measured
results indicates thar this calculation underestimates the initial loss
percentage., In addition to the sorting and slope readjustment losses,
significant quantities of Fill wmaterial were lost due to the lateral
spreading of material ontn adjacent beaches.

An oblique aerial photo taken before the 1970 beach Fill showsd that
the placement of the fill could only have reinfarced the beach alinement
problem alaong Wrightsville Besch. Since 1965, the beach section which
suffered the localized and high erusion rates protruded fram the
generally smooth, curving beach planform. It was concluded that the
relative change in besch planforw and nearshore bathymetry resulted ia
an increase in localized wave activity, sediment transport potential,
and erosional trends, and that this phenomena would continue until the
relative change in beach shape is eliminated. Therefore, it appears
that the ¢ontinual rencurishment of this section perpetuated the problem
of increased localized wave activity.

This study showed that beach losses in addition fo the =ezpected
losses due to sorting and slope readjustment occurred during the initial
1.9- to 2-year response phase. It appeared that lateral spreading of
the fill material onto adjacent beaches, due to the forced protrusien of
the beach Fill out beyond the general beach alinement, rvesulted ia these
additional significant losses,.
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APPENDIX A

WRIGHTSVILLE BEACH EXCURSION DISTANCE PLOTS
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